MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falantru Structured version   Unicode version

Theorem falantru 1348
Description: A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falantru  |-  ( (  F.  /\  T.  )  <->  F.  )

Proof of Theorem falantru
StepHypRef Expression
1 fal 1332 . . 3  |-  -.  F.
21intnanr 883 . 2  |-  -.  (  F.  /\  T.  )
32bifal 1337 1  |-  ( (  F.  /\  T.  )  <->  F.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    T. wtru 1326    F. wfal 1327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-fal 1330
  Copyright terms: Public domain W3C validator