MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falim Unicode version

Theorem falim 1319
Description:  F. implies anything. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
falim  |-  (  F. 
->  ph )

Proof of Theorem falim
StepHypRef Expression
1 fal 1313 . 2  |-  -.  F.
21pm2.21i 123 1  |-  (  F. 
->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    F. wfal 1308
This theorem is referenced by:  falimd  1320  dfnot  1322  falimtru  1336  tbw-bijust  1453  tbw-negdf  1454  tbw-ax4  1458  merco1  1468  merco2  1491  nalf  24914  imsym1  24929  consym1  24931  dissym1  24932  unisym1  24934  exisym1  24935  facrm  25056
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator