MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falim Structured version   Unicode version

Theorem falim 1337
Description:  F. implies anything. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
falim  |-  (  F. 
->  ph )

Proof of Theorem falim
StepHypRef Expression
1 fal 1331 . 2  |-  -.  F.
21pm2.21i 125 1  |-  (  F. 
->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    F. wfal 1326
This theorem is referenced by:  falimd  1338  dfnot  1341  falimtru  1355  tbw-bijust  1472  tbw-negdf  1473  tbw-ax4  1477  merco1  1487  merco2  1510  nalf  26118  imsym1  26133  consym1  26135  dissym1  26136  unisym1  26138  exisym1  26139  cshwssizelem1a  28206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-tru 1328  df-fal 1329
  Copyright terms: Public domain W3C validator