MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falim Unicode version

Theorem falim 1334
Description:  F. implies anything. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
falim  |-  (  F. 
->  ph )

Proof of Theorem falim
StepHypRef Expression
1 fal 1328 . 2  |-  -.  F.
21pm2.21i 125 1  |-  (  F. 
->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    F. wfal 1323
This theorem is referenced by:  falimd  1335  dfnot  1338  falimtru  1352  tbw-bijust  1469  tbw-negdf  1470  tbw-ax4  1474  merco1  1484  merco2  1507  nalf  25868  imsym1  25883  consym1  25885  dissym1  25886  unisym1  25888  exisym1  25889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-tru 1325  df-fal 1326
  Copyright terms: Public domain W3C validator