MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimd Unicode version

Theorem falimd 1320
Description:  F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
falimd  |-  ( (
ph  /\  F.  )  ->  ps )

Proof of Theorem falimd
StepHypRef Expression
1 falim 1319 . 2  |-  (  F. 
->  ps )
21adantl 452 1  |-  ( (
ph  /\  F.  )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    F. wfal 1308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator