MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimtru Unicode version

Theorem falimtru 1352
Description: A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falimtru  |-  ( (  F.  ->  T.  )  <->  T.  )

Proof of Theorem falimtru
StepHypRef Expression
1 falim 1334 . 2  |-  (  F. 
->  T.  )
21bitru 1332 1  |-  ( (  F.  ->  T.  )  <->  T.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    T. wtru 1322    F. wfal 1323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-tru 1325  df-fal 1326
  Copyright terms: Public domain W3C validator