MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnanfal Structured version   Unicode version

Theorem falnanfal 1367
Description: A  -/\ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnanfal  |-  ( (  F.  -/\  F.  )  <->  T.  )

Proof of Theorem falnanfal
StepHypRef Expression
1 nannot 1303 . 2  |-  ( -. 
F. 
<->  (  F.  -/\  F.  )
)
2 notfal 1359 . 2  |-  ( -. 
F. 
<->  T.  )
31, 2bitr3i 244 1  |-  ( (  F.  -/\  F.  )  <->  T.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178    -/\ wnan 1297    T. wtru 1326    F. wfal 1327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-nan 1298  df-tru 1329  df-fal 1330
  Copyright terms: Public domain W3C validator