MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnantru Structured version   Unicode version

Theorem falnantru 1365
Description: A  -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnantru  |-  ( (  F.  -/\  T.  )  <->  T.  )

Proof of Theorem falnantru
StepHypRef Expression
1 nancom 1299 . 2  |-  ( (  F.  -/\  T.  )  <->  (  T.  -/\  F.  )
)
2 trunanfal 1364 . 2  |-  ( (  T.  -/\  F.  )  <->  T.  )
31, 2bitri 241 1  |-  ( (  F.  -/\  T.  )  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    -/\ wnan 1296    T. wtru 1325    F. wfal 1326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-nan 1297  df-tru 1328  df-fal 1329
  Copyright terms: Public domain W3C validator