MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falorfal Structured version   Unicode version

Theorem falorfal 1353
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falorfal  |-  ( (  F.  \/  F.  )  <->  F.  )

Proof of Theorem falorfal
StepHypRef Expression
1 oridm 502 1  |-  ( (  F.  \/  F.  )  <->  F.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ wo 359    F. wfal 1327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator