MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falorfal Unicode version

Theorem falorfal 1349
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falorfal  |-  ( (  F.  \/  F.  )  <->  F.  )

Proof of Theorem falorfal
StepHypRef Expression
1 oridm 501 1  |-  ( (  F.  \/  F.  )  <->  F.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    F. wfal 1323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360
  Copyright terms: Public domain W3C validator