MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falortru Structured version   Unicode version

Theorem falortru 1351
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru  |-  ( (  F.  \/  T.  )  <->  T.  )

Proof of Theorem falortru
StepHypRef Expression
1 tru 1330 . . 3  |-  T.
21olci 381 . 2  |-  (  F.  \/  T.  )
32bitru 1335 1  |-  ( (  F.  \/  T.  )  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    T. wtru 1325    F. wfal 1326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-tru 1328
  Copyright terms: Public domain W3C validator