MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Unicode version

Theorem fbasfip 17563
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )

Proof of Theorem fbasfip
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3358 . . . . . 6  |-  ( y  e.  ( ~P F  i^i  Fin )  <->  ( y  e.  ~P F  /\  y  e.  Fin ) )
2 elpwi 3633 . . . . . . 7  |-  ( y  e.  ~P F  -> 
y  C_  F )
32anim1i 551 . . . . . 6  |-  ( ( y  e.  ~P F  /\  y  e.  Fin )  ->  ( y  C_  F  /\  y  e.  Fin ) )
41, 3sylbi 187 . . . . 5  |-  ( y  e.  ( ~P F  i^i  Fin )  ->  (
y  C_  F  /\  y  e.  Fin )
)
5 fbssint 17533 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  y  C_  F  /\  y  e. 
Fin )  ->  E. z  e.  F  z  C_  |^| y )
653expb 1152 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  (
y  C_  F  /\  y  e.  Fin )
)  ->  E. z  e.  F  z  C_  |^| y )
74, 6sylan2 460 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  E. z  e.  F  z  C_  |^| y )
8 0nelfb 17526 . . . . . . . . . . 11  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  F
)
98ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  (/) 
e.  F )
10 eleq1 2343 . . . . . . . . . . . 12  |-  ( z  =  (/)  ->  ( z  e.  F  <->  (/)  e.  F
) )
1110biimpcd 215 . . . . . . . . . . 11  |-  ( z  e.  F  ->  (
z  =  (/)  ->  (/)  e.  F
) )
1211adantl 452 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  (
z  =  (/)  ->  (/)  e.  F
) )
139, 12mtod 168 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  =  (/) )
14 ss0 3485 . . . . . . . . 9  |-  ( z 
C_  (/)  ->  z  =  (/) )
1513, 14nsyl 113 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  C_  (/) )
1615adantrr 697 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  z  C_  (/) )
17 sseq2 3200 . . . . . . . . 9  |-  ( (/)  =  |^| y  ->  (
z  C_  (/)  <->  z  C_  |^| y ) )
1817biimprcd 216 . . . . . . . 8  |-  ( z 
C_  |^| y  ->  ( (/)  =  |^| y  -> 
z  C_  (/) ) )
1918ad2antll 709 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  ( (/)  =  |^| y  ->  z  C_  (/) ) )
2016, 19mtod 168 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  (/)  =  |^| y )
2120exp32 588 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  (
z  e.  F  -> 
( z  C_  |^| y  ->  -.  (/)  =  |^| y
) ) )
2221rexlimdv 2666 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  ( E. z  e.  F  z  C_  |^| y  ->  -.  (/)  =  |^| y ) )
237, 22mpd 14 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  -.  (/)  =  |^| y )
2423nrexdv 2646 . 2  |-  ( F  e.  ( fBas `  X
)  ->  -.  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y )
25 0ex 4150 . . 3  |-  (/)  e.  _V
26 elfi 7167 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ( fBas `  X
) )  ->  ( (/) 
e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2725, 26mpan 651 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( (/)  e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2824, 27mtbird 292 1  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   |^|cint 3862   ` cfv 5255   Fincfn 6863   ficfi 7164   fBascfbas 17518
This theorem is referenced by:  fbunfip  17564  efilcp  25552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-fbas 17520
  Copyright terms: Public domain W3C validator