MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbfinnfr Unicode version

Theorem fbfinnfr 17552
Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbfinnfr  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F  /\  S  e. 
Fin )  ->  |^| F  =/=  (/) )

Proof of Theorem fbfinnfr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2356 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  F  <->  y  e.  F ) )
21anbi2d 684 . . . . 5  |-  ( x  =  y  ->  (
( F  e.  (
fBas `  B )  /\  x  e.  F
)  <->  ( F  e.  ( fBas `  B
)  /\  y  e.  F ) ) )
32imbi1d 308 . . . 4  |-  ( x  =  y  ->  (
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) )  <->  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  |^| F  =/=  (/) ) ) )
4 eleq1 2356 . . . . . 6  |-  ( x  =  S  ->  (
x  e.  F  <->  S  e.  F ) )
54anbi2d 684 . . . . 5  |-  ( x  =  S  ->  (
( F  e.  (
fBas `  B )  /\  x  e.  F
)  <->  ( F  e.  ( fBas `  B
)  /\  S  e.  F ) ) )
65imbi1d 308 . . . 4  |-  ( x  =  S  ->  (
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) )  <->  ( ( F  e.  ( fBas `  B )  /\  S  e.  F )  ->  |^| F  =/=  (/) ) ) )
7 ibar 490 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  B
)  ->  ( x  e.  F  <->  ( F  e.  ( fBas `  B
)  /\  x  e.  F ) ) )
87adantr 451 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
x  e.  F  <->  ( F  e.  ( fBas `  B
)  /\  x  e.  F ) ) )
98imbi1d 308 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) )  <-> 
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  (
x  C.  y  ->  |^| F  =/=  (/) ) ) ) )
10 bi2.04 350 . . . . . . . . . 10  |-  ( ( x  C.  y  -> 
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  ( ( F  e.  ( fBas `  B )  /\  x  e.  F )  ->  (
x  C.  y  ->  |^| F  =/=  (/) ) ) )
119, 10syl6rbbr 255 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  ( x  e.  F  ->  ( x 
C.  y  ->  |^| F  =/=  (/) ) ) ) )
1211albidv 1615 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  A. x
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) ) ) )
13 df-ral 2561 . . . . . . . 8  |-  ( A. x  e.  F  (
x  C.  y  ->  |^| F  =/=  (/) )  <->  A. x
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) ) )
1412, 13syl6bbr 254 . . . . . . 7  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) ) ) )
15 0nelfb 17542 . . . . . . . . . . . . 13  |-  ( F  e.  ( fBas `  B
)  ->  -.  (/)  e.  F
)
16 eleq1 2356 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( y  e.  F  <->  (/)  e.  F
) )
1716notbid 285 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( -.  y  e.  F  <->  -.  (/)  e.  F
) )
1815, 17syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  B
)  ->  ( y  =  (/)  ->  -.  y  e.  F ) )
1918necon2ad 2507 . . . . . . . . . . 11  |-  ( F  e.  ( fBas `  B
)  ->  ( y  e.  F  ->  y  =/=  (/) ) )
2019imp 418 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  y  =/=  (/) )
21 ssn0 3500 . . . . . . . . . . 11  |-  ( ( y  C_  |^| F  /\  y  =/=  (/) )  ->  |^| F  =/=  (/) )
2221ex 423 . . . . . . . . . 10  |-  ( y 
C_  |^| F  ->  (
y  =/=  (/)  ->  |^| F  =/=  (/) ) )
2320, 22syl5com 26 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
y  C_  |^| F  ->  |^| F  =/=  (/) ) )
2423a1dd 42 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
y  C_  |^| F  -> 
( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) ) )
25 ssint 3894 . . . . . . . . . . . 12  |-  ( y 
C_  |^| F  <->  A. z  e.  F  y  C_  z )
2625notbii 287 . . . . . . . . . . 11  |-  ( -.  y  C_  |^| F  <->  -.  A. z  e.  F  y  C_  z )
27 rexnal 2567 . . . . . . . . . . 11  |-  ( E. z  e.  F  -.  y  C_  z  <->  -.  A. z  e.  F  y  C_  z )
2826, 27bitr4i 243 . . . . . . . . . 10  |-  ( -.  y  C_  |^| F  <->  E. z  e.  F  -.  y  C_  z )
29 fbasssin 17547 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F  /\  z  e.  F )  ->  E. x  e.  F  x  C_  (
y  i^i  z )
)
30 nssinpss 3414 . . . . . . . . . . . . . . . 16  |-  ( -.  y  C_  z  <->  ( y  i^i  z )  C.  y
)
31 sspsstr 3294 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  ( y  i^i  z )  /\  (
y  i^i  z )  C.  y )  ->  x  C.  y )
3230, 31sylan2b 461 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  ( y  i^i  z )  /\  -.  y  C_  z )  ->  x  C.  y )
3332expcom 424 . . . . . . . . . . . . . 14  |-  ( -.  y  C_  z  ->  ( x  C_  ( y  i^i  z )  ->  x  C.  y ) )
3433reximdv 2667 . . . . . . . . . . . . 13  |-  ( -.  y  C_  z  ->  ( E. x  e.  F  x  C_  ( y  i^i  z )  ->  E. x  e.  F  x  C.  y ) )
3529, 34syl5com 26 . . . . . . . . . . . 12  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F  /\  z  e.  F )  ->  ( -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) )
36353expia 1153 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
z  e.  F  -> 
( -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) ) )
3736rexlimdv 2679 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( E. z  e.  F  -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) )
3828, 37syl5bi 208 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( -.  y  C_  |^| F  ->  E. x  e.  F  x  C.  y ) )
39 r19.29 2696 . . . . . . . . . . 11  |-  ( ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  /\  E. x  e.  F  x 
C.  y )  ->  E. x  e.  F  ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y ) )
40 id 19 . . . . . . . . . . . . 13  |-  ( ( x  C.  y  ->  |^| F  =/=  (/) )  -> 
( x  C.  y  ->  |^| F  =/=  (/) ) )
4140imp 418 . . . . . . . . . . . 12  |-  ( ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y )  ->  |^| F  =/=  (/) )
4241rexlimivw 2676 . . . . . . . . . . 11  |-  ( E. x  e.  F  ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y )  ->  |^| F  =/=  (/) )
4339, 42syl 15 . . . . . . . . . 10  |-  ( ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  /\  E. x  e.  F  x 
C.  y )  ->  |^| F  =/=  (/) )
4443expcom 424 . . . . . . . . 9  |-  ( E. x  e.  F  x 
C.  y  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) )
4538, 44syl6 29 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( -.  y  C_  |^| F  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) ) )
4624, 45pm2.61d 150 . . . . . . 7  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) )
4714, 46sylbid 206 . . . . . 6  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  ->  |^| F  =/=  (/) ) )
4847com12 27 . . . . 5  |-  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  -> 
( ( F  e.  ( fBas `  B
)  /\  y  e.  F )  ->  |^| F  =/=  (/) ) )
4948a1i 10 . . . 4  |-  ( y  e.  Fin  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  -> 
( ( F  e.  ( fBas `  B
)  /\  y  e.  F )  ->  |^| F  =/=  (/) ) ) )
503, 6, 49findcard3 7116 . . 3  |-  ( S  e.  Fin  ->  (
( F  e.  (
fBas `  B )  /\  S  e.  F
)  ->  |^| F  =/=  (/) ) )
5150com12 27 . 2  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F )  ->  ( S  e.  Fin  ->  |^| F  =/=  (/) ) )
52513impia 1148 1  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F  /\  S  e. 
Fin )  ->  |^| F  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165    C. wpss 3166   (/)c0 3468   |^|cint 3878   ` cfv 5271   Fincfn 6879   fBascfbas 17534
This theorem is referenced by:  filfinnfr  17588
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fbas 17536
  Copyright terms: Public domain W3C validator