MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbfinnfr Unicode version

Theorem fbfinnfr 17536
Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbfinnfr  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F  /\  S  e. 
Fin )  ->  |^| F  =/=  (/) )

Proof of Theorem fbfinnfr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2343 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  F  <->  y  e.  F ) )
21anbi2d 684 . . . . 5  |-  ( x  =  y  ->  (
( F  e.  (
fBas `  B )  /\  x  e.  F
)  <->  ( F  e.  ( fBas `  B
)  /\  y  e.  F ) ) )
32imbi1d 308 . . . 4  |-  ( x  =  y  ->  (
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) )  <->  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  |^| F  =/=  (/) ) ) )
4 eleq1 2343 . . . . . 6  |-  ( x  =  S  ->  (
x  e.  F  <->  S  e.  F ) )
54anbi2d 684 . . . . 5  |-  ( x  =  S  ->  (
( F  e.  (
fBas `  B )  /\  x  e.  F
)  <->  ( F  e.  ( fBas `  B
)  /\  S  e.  F ) ) )
65imbi1d 308 . . . 4  |-  ( x  =  S  ->  (
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) )  <->  ( ( F  e.  ( fBas `  B )  /\  S  e.  F )  ->  |^| F  =/=  (/) ) ) )
7 ibar 490 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  B
)  ->  ( x  e.  F  <->  ( F  e.  ( fBas `  B
)  /\  x  e.  F ) ) )
87adantr 451 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
x  e.  F  <->  ( F  e.  ( fBas `  B
)  /\  x  e.  F ) ) )
98imbi1d 308 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) )  <-> 
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  (
x  C.  y  ->  |^| F  =/=  (/) ) ) ) )
10 bi2.04 350 . . . . . . . . . 10  |-  ( ( x  C.  y  -> 
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  ( ( F  e.  ( fBas `  B )  /\  x  e.  F )  ->  (
x  C.  y  ->  |^| F  =/=  (/) ) ) )
119, 10syl6rbbr 255 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  ( x  e.  F  ->  ( x 
C.  y  ->  |^| F  =/=  (/) ) ) ) )
1211albidv 1611 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  A. x
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) ) ) )
13 df-ral 2548 . . . . . . . 8  |-  ( A. x  e.  F  (
x  C.  y  ->  |^| F  =/=  (/) )  <->  A. x
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) ) )
1412, 13syl6bbr 254 . . . . . . 7  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) ) ) )
15 0nelfb 17526 . . . . . . . . . . . . 13  |-  ( F  e.  ( fBas `  B
)  ->  -.  (/)  e.  F
)
16 eleq1 2343 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( y  e.  F  <->  (/)  e.  F
) )
1716notbid 285 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( -.  y  e.  F  <->  -.  (/)  e.  F
) )
1815, 17syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  B
)  ->  ( y  =  (/)  ->  -.  y  e.  F ) )
1918necon2ad 2494 . . . . . . . . . . 11  |-  ( F  e.  ( fBas `  B
)  ->  ( y  e.  F  ->  y  =/=  (/) ) )
2019imp 418 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  y  =/=  (/) )
21 ssn0 3487 . . . . . . . . . . 11  |-  ( ( y  C_  |^| F  /\  y  =/=  (/) )  ->  |^| F  =/=  (/) )
2221ex 423 . . . . . . . . . 10  |-  ( y 
C_  |^| F  ->  (
y  =/=  (/)  ->  |^| F  =/=  (/) ) )
2320, 22syl5com 26 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
y  C_  |^| F  ->  |^| F  =/=  (/) ) )
2423a1dd 42 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
y  C_  |^| F  -> 
( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) ) )
25 ssint 3878 . . . . . . . . . . . 12  |-  ( y 
C_  |^| F  <->  A. z  e.  F  y  C_  z )
2625notbii 287 . . . . . . . . . . 11  |-  ( -.  y  C_  |^| F  <->  -.  A. z  e.  F  y  C_  z )
27 rexnal 2554 . . . . . . . . . . 11  |-  ( E. z  e.  F  -.  y  C_  z  <->  -.  A. z  e.  F  y  C_  z )
2826, 27bitr4i 243 . . . . . . . . . 10  |-  ( -.  y  C_  |^| F  <->  E. z  e.  F  -.  y  C_  z )
29 fbasssin 17531 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F  /\  z  e.  F )  ->  E. x  e.  F  x  C_  (
y  i^i  z )
)
30 nssinpss 3401 . . . . . . . . . . . . . . . 16  |-  ( -.  y  C_  z  <->  ( y  i^i  z )  C.  y
)
31 sspsstr 3281 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  ( y  i^i  z )  /\  (
y  i^i  z )  C.  y )  ->  x  C.  y )
3230, 31sylan2b 461 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  ( y  i^i  z )  /\  -.  y  C_  z )  ->  x  C.  y )
3332expcom 424 . . . . . . . . . . . . . 14  |-  ( -.  y  C_  z  ->  ( x  C_  ( y  i^i  z )  ->  x  C.  y ) )
3433reximdv 2654 . . . . . . . . . . . . 13  |-  ( -.  y  C_  z  ->  ( E. x  e.  F  x  C_  ( y  i^i  z )  ->  E. x  e.  F  x  C.  y ) )
3529, 34syl5com 26 . . . . . . . . . . . 12  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F  /\  z  e.  F )  ->  ( -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) )
36353expia 1153 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
z  e.  F  -> 
( -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) ) )
3736rexlimdv 2666 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( E. z  e.  F  -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) )
3828, 37syl5bi 208 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( -.  y  C_  |^| F  ->  E. x  e.  F  x  C.  y ) )
39 r19.29 2683 . . . . . . . . . . 11  |-  ( ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  /\  E. x  e.  F  x 
C.  y )  ->  E. x  e.  F  ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y ) )
40 id 19 . . . . . . . . . . . . 13  |-  ( ( x  C.  y  ->  |^| F  =/=  (/) )  -> 
( x  C.  y  ->  |^| F  =/=  (/) ) )
4140imp 418 . . . . . . . . . . . 12  |-  ( ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y )  ->  |^| F  =/=  (/) )
4241rexlimivw 2663 . . . . . . . . . . 11  |-  ( E. x  e.  F  ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y )  ->  |^| F  =/=  (/) )
4339, 42syl 15 . . . . . . . . . 10  |-  ( ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  /\  E. x  e.  F  x 
C.  y )  ->  |^| F  =/=  (/) )
4443expcom 424 . . . . . . . . 9  |-  ( E. x  e.  F  x 
C.  y  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) )
4538, 44syl6 29 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( -.  y  C_  |^| F  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) ) )
4624, 45pm2.61d 150 . . . . . . 7  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) )
4714, 46sylbid 206 . . . . . 6  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  ->  |^| F  =/=  (/) ) )
4847com12 27 . . . . 5  |-  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  -> 
( ( F  e.  ( fBas `  B
)  /\  y  e.  F )  ->  |^| F  =/=  (/) ) )
4948a1i 10 . . . 4  |-  ( y  e.  Fin  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  -> 
( ( F  e.  ( fBas `  B
)  /\  y  e.  F )  ->  |^| F  =/=  (/) ) ) )
503, 6, 49findcard3 7100 . . 3  |-  ( S  e.  Fin  ->  (
( F  e.  (
fBas `  B )  /\  S  e.  F
)  ->  |^| F  =/=  (/) ) )
5150com12 27 . 2  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F )  ->  ( S  e.  Fin  ->  |^| F  =/=  (/) ) )
52513impia 1148 1  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F  /\  S  e. 
Fin )  ->  |^| F  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152    C. wpss 3153   (/)c0 3455   |^|cint 3862   ` cfv 5255   Fincfn 6863   fBascfbas 17518
This theorem is referenced by:  filfinnfr  17572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fbas 17520
  Copyright terms: Public domain W3C validator