MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbsspw Unicode version

Theorem fbsspw 17778
Description: A filter base on a set is a subset of the power set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbsspw  |-  ( F  e.  ( fBas `  B
)  ->  F  C_  ~P B )

Proof of Theorem fbsspw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5690 . . . 4  |-  ( F  e.  ( fBas `  B
)  ->  B  e.  dom  fBas )
2 isfbas 17775 . . . 4  |-  ( B  e.  dom  fBas  ->  ( F  e.  ( fBas `  B )  <->  ( F  C_ 
~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
31, 2syl 16 . . 3  |-  ( F  e.  ( fBas `  B
)  ->  ( F  e.  ( fBas `  B
)  <->  ( F  C_  ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
43ibi 233 . 2  |-  ( F  e.  ( fBas `  B
)  ->  ( F  C_ 
~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) )
54simpld 446 1  |-  ( F  e.  ( fBas `  B
)  ->  F  C_  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1717    =/= wne 2543    e/ wnel 2544   A.wral 2642    i^i cin 3255    C_ wss 3256   (/)c0 3564   ~Pcpw 3735   dom cdm 4811   ` cfv 5387   fBascfbas 16608
This theorem is referenced by:  fbelss  17779  fbun  17786  filsspw  17797  fsubbas  17813  fgabs  17825  fmfnfm  17904  cfiluweak  18239  minveclem4a  19191  minveclem4  19193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fv 5395  df-fbas 16616
  Copyright terms: Public domain W3C validator