MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfnei Unicode version

Theorem fcfnei 17990
Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfnei  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
Distinct variable groups:    A, n    n, s, J    n, L, s    n, F, s    n, X, s    n, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem fcfnei
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 isfcf 17989 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
2 simpll1 996 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  (TopOn `  X
) )
3 topontop 16916 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
42, 3syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  Top )
5 simpr 448 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  n  e.  ( ( nei `  J ) `  { A } ) )
6 eqid 2389 . . . . . . . . 9  |-  U. J  =  U. J
76neii1 17095 . . . . . . . 8  |-  ( ( J  e.  Top  /\  n  e.  ( ( nei `  J ) `  { A } ) )  ->  n  C_  U. J
)
84, 5, 7syl2anc 643 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  n  C_  U. J )
96ntrss2 17046 . . . . . . 7  |-  ( ( J  e.  Top  /\  n  C_  U. J )  ->  ( ( int `  J ) `  n
)  C_  n )
104, 8, 9syl2anc 643 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  n )  C_  n )
11 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  X )
12 toponuni 16917 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
132, 12syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  X  =  U. J )
1411, 13eleqtrd 2465 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  U. J )
1514snssd 3888 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
166neiint 17093 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { A }  C_  U. J  /\  n  C_  U. J
)  ->  ( n  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
174, 15, 8, 16syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( n  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
185, 17mpbid 202 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  (
( int `  J
) `  n )
)
19 snssg 3877 . . . . . . . . 9  |-  ( A  e.  X  ->  ( A  e.  ( ( int `  J ) `  n )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
2011, 19syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A  e.  ( ( int `  J
) `  n )  <->  { A }  C_  (
( int `  J
) `  n )
) )
2118, 20mpbird 224 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  ( ( int `  J ) `  n ) )
226ntropn 17038 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  n  C_  U. J )  ->  ( ( int `  J ) `  n
)  e.  J )
234, 8, 22syl2anc 643 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  n )  e.  J )
24 eleq2 2450 . . . . . . . . . 10  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( A  e.  o  <->  A  e.  (
( int `  J
) `  n )
) )
25 ineq1 3480 . . . . . . . . . . . 12  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( o  i^i  ( F " s
) )  =  ( ( ( int `  J
) `  n )  i^i  ( F " s
) ) )
2625neeq1d 2565 . . . . . . . . . . 11  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( (
o  i^i  ( F " s ) )  =/=  (/) 
<->  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
2726ralbidv 2671 . . . . . . . . . 10  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) 
<-> 
A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
2824, 27imbi12d 312 . . . . . . . . 9  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) )  <->  ( A  e.  ( ( int `  J
) `  n )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) ) )
2928rspcv 2993 . . . . . . . 8  |-  ( ( ( int `  J
) `  n )  e.  J  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) )  ->  ( A  e.  ( ( int `  J ) `  n )  ->  A. s  e.  L  ( (
( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/) ) ) )
3023, 29syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  -> 
( A  e.  ( ( int `  J
) `  n )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) ) )
3121, 30mpid 39 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
32 ssrin 3511 . . . . . . . 8  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( (
( int `  J
) `  n )  i^i  ( F " s
) )  C_  (
n  i^i  ( F " s ) ) )
33 ssn0 3605 . . . . . . . . 9  |-  ( ( ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  C_  ( n  i^i  ( F " s ) )  /\  ( ( ( int `  J ) `
 n )  i^i  ( F " s
) )  =/=  (/) )  -> 
( n  i^i  ( F " s ) )  =/=  (/) )
3433ex 424 . . . . . . . 8  |-  ( ( ( ( int `  J
) `  n )  i^i  ( F " s
) )  C_  (
n  i^i  ( F " s ) )  -> 
( ( ( ( int `  J ) `
 n )  i^i  ( F " s
) )  =/=  (/)  ->  (
n  i^i  ( F " s ) )  =/=  (/) ) )
3532, 34syl 16 . . . . . . 7  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( (
( ( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/)  ->  (
n  i^i  ( F " s ) )  =/=  (/) ) )
3635ralimdv 2730 . . . . . 6  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( A. s  e.  L  (
( ( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
3710, 31, 36sylsyld 54 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  ->  A. s  e.  L  ( n  i^i  ( F " s ) )  =/=  (/) ) )
3837ralrimdva 2741 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
39 simpl1 960 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
4039, 3syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  Top )
41 opnneip 17108 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  o  e.  J  /\  A  e.  o )  ->  o  e.  ( ( nei `  J ) `
 { A }
) )
42413expb 1154 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( o  e.  J  /\  A  e.  o
) )  ->  o  e.  ( ( nei `  J
) `  { A } ) )
4340, 42sylan 458 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
o  e.  ( ( nei `  J ) `
 { A }
) )
44 ineq1 3480 . . . . . . . . . . 11  |-  ( n  =  o  ->  (
n  i^i  ( F " s ) )  =  ( o  i^i  ( F " s ) ) )
4544neeq1d 2565 . . . . . . . . . 10  |-  ( n  =  o  ->  (
( n  i^i  ( F " s ) )  =/=  (/)  <->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4645ralbidv 2671 . . . . . . . . 9  |-  ( n  =  o  ->  ( A. s  e.  L  ( n  i^i  ( F " s ) )  =/=  (/)  <->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )
4746rspcv 2993 . . . . . . . 8  |-  ( o  e.  ( ( nei `  J ) `  { A } )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4843, 47syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4948expr 599 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A  e.  o  ->  ( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
5049com23 74 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) ) ) )
5150ralrimdva 2741 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
5238, 51impbid 184 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) )  <->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
5352pm5.32da 623 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
541, 53bitrd 245 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651    i^i cin 3264    C_ wss 3265   (/)c0 3573   {csn 3759   U.cuni 3959   "cima 4823   -->wf 5392   ` cfv 5396  (class class class)co 6022   Topctop 16883  TopOnctopon 16884   intcnt 17006   neicnei 17086   Filcfil 17800    fClusf cfcf 17892
This theorem is referenced by:  fcfneii  17992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-map 6958  df-fbas 16625  df-fg 16626  df-top 16888  df-topon 16891  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-fil 17801  df-fm 17893  df-fcls 17896  df-fcf 17897
  Copyright terms: Public domain W3C validator