MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfval Structured version   Unicode version

Theorem fcfval 18065
Description: The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfval  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fClusf  L ) `
 F )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )

Proof of Theorem fcfval
Dummy variables  f 
g  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fcf 17974 . . . . 5  |-  fClusf  =  ( j  e.  Top , 
f  e.  U. ran  Fil  |->  ( g  e.  ( U. j  ^m  U. f )  |->  ( j 
fClus  ( ( U. j  FilMap  g ) `  f
) ) ) )
21a1i 11 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  fClusf  =  ( j  e.  Top , 
f  e.  U. ran  Fil  |->  ( g  e.  ( U. j  ^m  U. f )  |->  ( j 
fClus  ( ( U. j  FilMap  g ) `  f
) ) ) ) )
3 simprl 733 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  j  =  J )
43unieqd 4026 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  U. j  =  U. J )
5 toponuni 16992 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
65ad2antrr 707 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  X  =  U. J )
74, 6eqtr4d 2471 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  U. j  =  X )
8 unieq 4024 . . . . . . . 8  |-  ( f  =  L  ->  U. f  =  U. L )
98ad2antll 710 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  U. f  =  U. L )
10 filunibas 17913 . . . . . . . 8  |-  ( L  e.  ( Fil `  Y
)  ->  U. L  =  Y )
1110ad2antlr 708 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  U. L  =  Y )
129, 11eqtrd 2468 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  U. f  =  Y )
137, 12oveq12d 6099 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  ( U. j  ^m  U. f )  =  ( X  ^m  Y ) )
147oveq1d 6096 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  ( U. j  FilMap  g )  =  ( X  FilMap  g ) )
15 simprr 734 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  f  =  L )
1614, 15fveq12d 5734 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  ( ( U. j  FilMap  g ) `
 f )  =  ( ( X  FilMap  g ) `  L ) )
173, 16oveq12d 6099 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  ( j  fClus  ( ( U. j  FilMap  g ) `  f
) )  =  ( J  fClus  ( ( X  FilMap  g ) `  L ) ) )
1813, 17mpteq12dv 4287 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  (
j  =  J  /\  f  =  L )
)  ->  ( g  e.  ( U. j  ^m  U. f )  |->  ( j 
fClus  ( ( U. j  FilMap  g ) `  f
) ) )  =  ( g  e.  ( X  ^m  Y ) 
|->  ( J  fClus  ( ( X  FilMap  g ) `  L ) ) ) )
19 topontop 16991 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2019adantr 452 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  J  e.  Top )
21 fvssunirn 5754 . . . . . 6  |-  ( Fil `  Y )  C_  U. ran  Fil
2221sseli 3344 . . . . 5  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  U.
ran  Fil )
2322adantl 453 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  L  e.  U. ran  Fil )
24 ovex 6106 . . . . . 6  |-  ( X  ^m  Y )  e. 
_V
2524mptex 5966 . . . . 5  |-  ( g  e.  ( X  ^m  Y )  |->  ( J 
fClus  ( ( X  FilMap  g ) `  L ) ) )  e.  _V
2625a1i 11 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  (
g  e.  ( X  ^m  Y )  |->  ( J  fClus  ( ( X  FilMap  g ) `  L ) ) )  e.  _V )
272, 18, 20, 23, 26ovmpt2d 6201 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fClusf  L )  =  ( g  e.  ( X  ^m  Y ) 
|->  ( J  fClus  ( ( X  FilMap  g ) `  L ) ) ) )
28273adant3 977 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( J  fClusf  L )  =  ( g  e.  ( X  ^m  Y ) 
|->  ( J  fClus  ( ( X  FilMap  g ) `  L ) ) ) )
29 simpr 448 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  g  =  F )  ->  g  =  F )
3029oveq2d 6097 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  g  =  F )  ->  ( X  FilMap  g )  =  ( X  FilMap  F ) )
3130fveq1d 5730 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  g  =  F )  ->  (
( X  FilMap  g ) `
 L )  =  ( ( X  FilMap  F ) `  L ) )
3231oveq2d 6097 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  g  =  F )  ->  ( J  fClus  ( ( X 
FilMap  g ) `  L
) )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )
33 toponmax 16993 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
34 filtop 17887 . . . 4  |-  ( L  e.  ( Fil `  Y
)  ->  Y  e.  L )
35 elmapg 7031 . . . 4  |-  ( ( X  e.  J  /\  Y  e.  L )  ->  ( F  e.  ( X  ^m  Y )  <-> 
F : Y --> X ) )
3633, 34, 35syl2an 464 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( F  e.  ( X  ^m  Y )  <->  F : Y
--> X ) )
3736biimp3ar 1284 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  F  e.  ( X  ^m  Y
) )
38 ovex 6106 . . 3  |-  ( J 
fClus  ( ( X  FilMap  F ) `  L ) )  e.  _V
3938a1i 11 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( J  fClus  ( ( X 
FilMap  F ) `  L
) )  e.  _V )
4028, 32, 37, 39fvmptd 5810 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fClusf  L ) `
 F )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2956   U.cuni 4015    e. cmpt 4266   ran crn 4879   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083    ^m cmap 7018   Topctop 16958  TopOnctopon 16959   Filcfil 17877    FilMap cfm 17965    fClus cfcls 17968    fClusf cfcf 17969
This theorem is referenced by:  isfcf  18066  fcfelbas  18068  flfssfcf  18070  uffcfflf  18071  cnpfcfi  18072  cnpfcf  18073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-map 7020  df-fbas 16699  df-top 16963  df-topon 16966  df-fil 17878  df-fcf 17974
  Copyright terms: Public domain W3C validator