MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmp Structured version   Unicode version

Theorem fclscmp 18067
Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclscmp  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. f  e.  ( Fil `  X ) ( J  fClus  f )  =/=  (/) ) )
Distinct variable groups:    f, J    f, X

Proof of Theorem fclscmp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . 5  |-  U. J  =  U. J
21fclscmpi 18066 . . . 4  |-  ( ( J  e.  Comp  /\  f  e.  ( Fil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
32ralrimiva 2791 . . 3  |-  ( J  e.  Comp  ->  A. f  e.  ( Fil `  U. J ) ( J 
fClus  f )  =/=  (/) )
4 toponuni 16997 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
54fveq2d 5735 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( Fil `  X )  =  ( Fil `  U. J
) )
65raleqdv 2912 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( Fil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
73, 6syl5ibr 214 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  ->  A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/) ) )
8 elpwi 3809 . . . . . 6  |-  ( x  e.  ~P ( Clsd `  J )  ->  x  C_  ( Clsd `  J
) )
9 vn0 3637 . . . . . . . . . 10  |-  _V  =/=  (/)
10 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  x  =  (/) )
1110inteqd 4057 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  |^| x  =  |^| (/) )
12 int0 4066 . . . . . . . . . . . 12  |-  |^| (/)  =  _V
1311, 12syl6eq 2486 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  |^| x  =  _V )
1413neeq1d 2616 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  ( |^| x  =/=  (/)  <->  _V  =/=  (/) ) )
159, 14mpbiri 226 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  |^| x  =/=  (/) )
1615a1d 24 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  ( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) )
17 vex 2961 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
18 ssfii 7427 . . . . . . . . . . . . . . . 16  |-  ( x  e.  _V  ->  x  C_  ( fi `  x
) )
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15  |-  x  C_  ( fi `  x )
20 simplrl 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  C_  ( Clsd `  J
) )
211cldss2 17099 . . . . . . . . . . . . . . . . . . 19  |-  ( Clsd `  J )  C_  ~P U. J
224ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  X  =  U. J )
2322pweqd 3806 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  ~P X  =  ~P U. J )
2421, 23syl5sseqr 3399 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( Clsd `  J )  C_ 
~P X )
2520, 24sstrd 3360 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  C_  ~P X )
26 simpr 449 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  =/=  (/) )
27 simplrr 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  -.  (/)  e.  ( fi
`  x ) )
28 toponmax 16998 . . . . . . . . . . . . . . . . . . 19  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2928ad2antrr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  X  e.  J )
30 fsubbas 17904 . . . . . . . . . . . . . . . . . 18  |-  ( X  e.  J  ->  (
( fi `  x
)  e.  ( fBas `  X )  <->  ( x  C_ 
~P X  /\  x  =/=  (/)  /\  -.  (/)  e.  ( fi `  x ) ) ) )
3129, 30syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( ( fi `  x )  e.  (
fBas `  X )  <->  ( x  C_  ~P X  /\  x  =/=  (/)  /\  -.  (/) 
e.  ( fi `  x ) ) ) )
3225, 26, 27, 31mpbir3and 1138 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( fi `  x
)  e.  ( fBas `  X ) )
33 ssfg 17909 . . . . . . . . . . . . . . . 16  |-  ( ( fi `  x )  e.  ( fBas `  X
)  ->  ( fi `  x )  C_  ( X filGen ( fi `  x ) ) )
3432, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( fi `  x
)  C_  ( X filGen ( fi `  x
) ) )
3519, 34syl5ss 3361 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  C_  ( X filGen ( fi `  x ) ) )
3635sselda 3350 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  y  e.  ( X filGen ( fi
`  x ) ) )
37 fclssscls 18055 . . . . . . . . . . . . 13  |-  ( y  e.  ( X filGen ( fi `  x ) )  ->  ( J  fClus  ( X filGen ( fi
`  x ) ) )  C_  ( ( cls `  J ) `  y ) )
3836, 37syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  C_  (
( cls `  J
) `  y )
)
3920sselda 3350 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  y  e.  ( Clsd `  J
) )
40 cldcls 17111 . . . . . . . . . . . . 13  |-  ( y  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  y )  =  y )
4139, 40syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  (
( cls `  J
) `  y )  =  y )
4238, 41sseqtrd 3386 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  C_  y
)
4342ralrimiva 2791 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  A. y  e.  x  ( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  y )
44 ssint 4068 . . . . . . . . . 10  |-  ( ( J  fClus  ( X filGen ( fi `  x
) ) )  C_  |^| x  <->  A. y  e.  x  ( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  y )
4543, 44sylibr 205 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  |^| x )
46 fgcl 17915 . . . . . . . . . 10  |-  ( ( fi `  x )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  x
) )  e.  ( Fil `  X ) )
47 oveq2 6092 . . . . . . . . . . . 12  |-  ( f  =  ( X filGen ( fi `  x ) )  ->  ( J  fClus  f )  =  ( J  fClus  ( X filGen ( fi `  x
) ) ) )
4847neeq1d 2616 . . . . . . . . . . 11  |-  ( f  =  ( X filGen ( fi `  x ) )  ->  ( ( J  fClus  f )  =/=  (/) 
<->  ( J  fClus  ( X
filGen ( fi `  x
) ) )  =/=  (/) ) )
4948rspcv 3050 . . . . . . . . . 10  |-  ( ( X filGen ( fi `  x ) )  e.  ( Fil `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  =/=  (/) ) )
5032, 46, 493syl 19 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  =/=  (/) ) )
51 ssn0 3662 . . . . . . . . 9  |-  ( ( ( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  |^| x  /\  ( J 
fClus  ( X filGen ( fi
`  x ) ) )  =/=  (/) )  ->  |^| x  =/=  (/) )
5245, 50, 51ee12an 1373 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) )
5316, 52pm2.61dane 2684 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  ->  ( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) )
5453expr 600 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  x  C_  ( Clsd `  J
) )  ->  ( -.  (/)  e.  ( fi
`  x )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) ) )
558, 54sylan2 462 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  ~P ( Clsd `  J
) )  ->  ( -.  (/)  e.  ( fi
`  x )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) ) )
5655com23 75 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  ~P ( Clsd `  J
) )  ->  ( A. f  e.  ( Fil `  X ) ( J  fClus  f )  =/=  (/)  ->  ( -.  (/) 
e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
5756ralrimdva 2798 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  ->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
58 topontop 16996 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
59 cmpfi 17476 . . . 4  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
6058, 59syl 16 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J )
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
6157, 60sylibrd 227 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  ->  J  e.  Comp ) )
627, 61impbid 185 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. f  e.  ( Fil `  X ) ( J  fClus  f )  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   U.cuni 4017   |^|cint 4052   ` cfv 5457  (class class class)co 6084   ficfi 7418   fBascfbas 16694   filGencfg 16695   Topctop 16963  TopOnctopon 16964   Clsdccld 17085   clsccl 17087   Compccmp 17454   Filcfil 17882    fClus cfcls 17973
This theorem is referenced by:  ufilcmp  18069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-fbas 16704  df-fg 16705  df-top 16968  df-topon 16971  df-cld 17088  df-cls 17090  df-cmp 17455  df-fil 17883  df-fcls 17978
  Copyright terms: Public domain W3C validator