MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmp Unicode version

Theorem fclscmp 17725
Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclscmp  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. f  e.  ( Fil `  X ) ( J  fClus  f )  =/=  (/) ) )
Distinct variable groups:    f, J    f, X

Proof of Theorem fclscmp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . 5  |-  U. J  =  U. J
21fclscmpi 17724 . . . 4  |-  ( ( J  e.  Comp  /\  f  e.  ( Fil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
32ralrimiva 2626 . . 3  |-  ( J  e.  Comp  ->  A. f  e.  ( Fil `  U. J ) ( J 
fClus  f )  =/=  (/) )
4 toponuni 16665 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
54fveq2d 5529 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( Fil `  X )  =  ( Fil `  U. J
) )
65raleqdv 2742 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( Fil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
73, 6syl5ibr 212 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  ->  A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/) ) )
8 elpwi 3633 . . . . . 6  |-  ( x  e.  ~P ( Clsd `  J )  ->  x  C_  ( Clsd `  J
) )
9 vn0 3462 . . . . . . . . . 10  |-  _V  =/=  (/)
10 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  x  =  (/) )
1110inteqd 3867 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  |^| x  =  |^| (/) )
12 int0 3876 . . . . . . . . . . . 12  |-  |^| (/)  =  _V
1311, 12syl6eq 2331 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  |^| x  =  _V )
1413neeq1d 2459 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  ( |^| x  =/=  (/)  <->  _V  =/=  (/) ) )
159, 14mpbiri 224 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  |^| x  =/=  (/) )
1615a1d 22 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =  (/) )  ->  ( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) )
17 vex 2791 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
18 ssfii 7172 . . . . . . . . . . . . . . . 16  |-  ( x  e.  _V  ->  x  C_  ( fi `  x
) )
1917, 18ax-mp 8 . . . . . . . . . . . . . . 15  |-  x  C_  ( fi `  x )
20 simplrl 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  C_  ( Clsd `  J
) )
211cldss2 16767 . . . . . . . . . . . . . . . . . . 19  |-  ( Clsd `  J )  C_  ~P U. J
224ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  X  =  U. J )
2322pweqd 3630 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  ~P X  =  ~P U. J )
2421, 23syl5sseqr 3227 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( Clsd `  J )  C_ 
~P X )
2520, 24sstrd 3189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  C_  ~P X )
26 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  =/=  (/) )
27 simplrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  -.  (/)  e.  ( fi
`  x ) )
28 toponmax 16666 . . . . . . . . . . . . . . . . . . 19  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2928ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  X  e.  J )
30 fsubbas 17562 . . . . . . . . . . . . . . . . . 18  |-  ( X  e.  J  ->  (
( fi `  x
)  e.  ( fBas `  X )  <->  ( x  C_ 
~P X  /\  x  =/=  (/)  /\  -.  (/)  e.  ( fi `  x ) ) ) )
3129, 30syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( ( fi `  x )  e.  (
fBas `  X )  <->  ( x  C_  ~P X  /\  x  =/=  (/)  /\  -.  (/) 
e.  ( fi `  x ) ) ) )
3225, 26, 27, 31mpbir3and 1135 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( fi `  x
)  e.  ( fBas `  X ) )
33 ssfg 17567 . . . . . . . . . . . . . . . 16  |-  ( ( fi `  x )  e.  ( fBas `  X
)  ->  ( fi `  x )  C_  ( X filGen ( fi `  x ) ) )
3432, 33syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( fi `  x
)  C_  ( X filGen ( fi `  x
) ) )
3519, 34syl5ss 3190 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  x  C_  ( X filGen ( fi `  x ) ) )
3635sselda 3180 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  y  e.  ( X filGen ( fi
`  x ) ) )
37 fclssscls 17713 . . . . . . . . . . . . 13  |-  ( y  e.  ( X filGen ( fi `  x ) )  ->  ( J  fClus  ( X filGen ( fi
`  x ) ) )  C_  ( ( cls `  J ) `  y ) )
3836, 37syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  C_  (
( cls `  J
) `  y )
)
3920sselda 3180 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  y  e.  ( Clsd `  J
) )
40 cldcls 16779 . . . . . . . . . . . . 13  |-  ( y  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  y )  =  y )
4139, 40syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  (
( cls `  J
) `  y )  =  y )
4238, 41sseqtrd 3214 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( x  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  x ) ) )  /\  x  =/=  (/) )  /\  y  e.  x )  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  C_  y
)
4342ralrimiva 2626 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  ->  A. y  e.  x  ( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  y )
44 ssint 3878 . . . . . . . . . 10  |-  ( ( J  fClus  ( X filGen ( fi `  x
) ) )  C_  |^| x  <->  A. y  e.  x  ( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  y )
4543, 44sylibr 203 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  |^| x )
46 fgcl 17573 . . . . . . . . . 10  |-  ( ( fi `  x )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  x
) )  e.  ( Fil `  X ) )
47 oveq2 5866 . . . . . . . . . . . 12  |-  ( f  =  ( X filGen ( fi `  x ) )  ->  ( J  fClus  f )  =  ( J  fClus  ( X filGen ( fi `  x
) ) ) )
4847neeq1d 2459 . . . . . . . . . . 11  |-  ( f  =  ( X filGen ( fi `  x ) )  ->  ( ( J  fClus  f )  =/=  (/) 
<->  ( J  fClus  ( X
filGen ( fi `  x
) ) )  =/=  (/) ) )
4948rspcv 2880 . . . . . . . . . 10  |-  ( ( X filGen ( fi `  x ) )  e.  ( Fil `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  =/=  (/) ) )
5032, 46, 493syl 18 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  ( X filGen ( fi `  x ) ) )  =/=  (/) ) )
51 ssn0 3487 . . . . . . . . 9  |-  ( ( ( J  fClus  ( X
filGen ( fi `  x
) ) )  C_  |^| x  /\  ( J 
fClus  ( X filGen ( fi
`  x ) ) )  =/=  (/) )  ->  |^| x  =/=  (/) )
5245, 50, 51ee12an 1353 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  /\  x  =/=  (/) )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) )
5316, 52pm2.61dane 2524 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  (
x  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  x ) ) )  ->  ( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) )
5453expr 598 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  x  C_  ( Clsd `  J
) )  ->  ( -.  (/)  e.  ( fi
`  x )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) ) )
558, 54sylan2 460 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  ~P ( Clsd `  J
) )  ->  ( -.  (/)  e.  ( fi
`  x )  -> 
( A. f  e.  ( Fil `  X
) ( J  fClus  f )  =/=  (/)  ->  |^| x  =/=  (/) ) ) )
5655com23 72 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  ~P ( Clsd `  J
) )  ->  ( A. f  e.  ( Fil `  X ) ( J  fClus  f )  =/=  (/)  ->  ( -.  (/) 
e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
5756ralrimdva 2633 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  ->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
58 topontop 16664 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
59 cmpfi 17135 . . . 4  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
6058, 59syl 15 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J )
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
6157, 60sylibrd 225 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( J 
fClus  f )  =/=  (/)  ->  J  e.  Comp ) )
627, 61impbid 183 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. f  e.  ( Fil `  X ) ( J  fClus  f )  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   U.cuni 3827   |^|cint 3862   ` cfv 5255  (class class class)co 5858   ficfi 7164   Topctop 16631  TopOnctopon 16632   Clsdccld 16753   clsccl 16755   Compccmp 17113   fBascfbas 17518   filGencfg 17519   Filcfil 17540    fClus cfcls 17631
This theorem is referenced by:  ufilcmp  17727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-top 16636  df-topon 16639  df-cld 16756  df-cls 16758  df-cmp 17114  df-fbas 17520  df-fg 17521  df-fil 17541  df-fcls 17636
  Copyright terms: Public domain W3C validator