MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmpi Unicode version

Theorem fclscmpi 17724
Description: Forward direction of fclscmp 17725. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x  |-  X  = 
U. J
Assertion
Ref Expression
fclscmpi  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  =/=  (/) )

Proof of Theorem fclscmpi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cmptop 17122 . . . 4  |-  ( J  e.  Comp  ->  J  e. 
Top )
2 flimfnfcls.x . . . . . 6  |-  X  = 
U. J
32fclsval 17703 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  -> 
( J  fClus  F )  =  if ( X  =  X ,  |^|_ x  e.  F  ( ( cls `  J ) `
 x ) ,  (/) ) )
4 eqid 2283 . . . . . 6  |-  X  =  X
5 iftrue 3571 . . . . . 6  |-  ( X  =  X  ->  if ( X  =  X ,  |^|_ x  e.  F  ( ( cls `  J
) `  x ) ,  (/) )  =  |^|_ x  e.  F  ( ( cls `  J ) `
 x ) )
64, 5ax-mp 8 . . . . 5  |-  if ( X  =  X ,  |^|_ x  e.  F  ( ( cls `  J
) `  x ) ,  (/) )  =  |^|_ x  e.  F  ( ( cls `  J ) `
 x )
73, 6syl6eq 2331 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  -> 
( J  fClus  F )  =  |^|_ x  e.  F  ( ( cls `  J
) `  x )
)
81, 7sylan 457 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  = 
|^|_ x  e.  F  ( ( cls `  J
) `  x )
)
9 fvex 5539 . . . 4  |-  ( ( cls `  J ) `
 x )  e. 
_V
109dfiin3 4934 . . 3  |-  |^|_ x  e.  F  ( ( cls `  J ) `  x )  =  |^| ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)
118, 10syl6eq 2331 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  = 
|^| ran  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) ) )
12 simpl 443 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  J  e.  Comp )
1312adantr 451 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  J  e.  Comp )
1413, 1syl 15 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  J  e.  Top )
15 filelss 17547 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  x  e.  F )  ->  x  C_  X )
1615adantll 694 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  x  C_  X )
172clscld 16784 . . . . . 6  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( cls `  J
) `  x )  e.  ( Clsd `  J
) )
1814, 16, 17syl2anc 642 . . . . 5  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  ( ( cls `  J
) `  x )  e.  ( Clsd `  J
) )
19 eqid 2283 . . . . 5  |-  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) )  =  ( x  e.  F  |->  ( ( cls `  J ) `  x
) )
2018, 19fmptd 5684 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> ( Clsd `  J ) )
21 frn 5395 . . . 4  |-  ( ( x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> ( Clsd `  J )  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  ( Clsd `  J ) )
2220, 21syl 15 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  ( Clsd `  J ) )
23 simpr 447 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  F  e.  ( Fil `  X
) )
24 0nelfil 17544 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  -.  (/)  e.  F
)
2523, 24syl 15 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  -.  (/) 
e.  F )
2623adantr 451 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  F  e.  ( Fil `  X ) )
27 simpr 447 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  x  e.  F )
282clsss3 16796 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( cls `  J
) `  x )  C_  X )
2914, 16, 28syl2anc 642 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  ( ( cls `  J
) `  x )  C_  X )
302sscls 16793 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  x  C_  X )  ->  x  C_  ( ( cls `  J ) `  x
) )
3114, 16, 30syl2anc 642 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  x  C_  ( ( cls `  J ) `  x ) )
32 filss 17548 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  ( ( cls `  J
) `  x )  C_  X  /\  x  C_  ( ( cls `  J
) `  x )
) )  ->  (
( cls `  J
) `  x )  e.  F )
3326, 27, 29, 31, 32syl13anc 1184 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  ( ( cls `  J
) `  x )  e.  F )
3433, 19fmptd 5684 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> F )
35 frn 5395 . . . . . . . 8  |-  ( ( x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> F  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  F )
3634, 35syl 15 . . . . . . 7  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  F )
37 fiss 7177 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  F )  ->  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) )  C_  ( fi `  F ) )
3823, 36, 37syl2anc 642 . . . . . 6  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) ) )  C_  ( fi `  F ) )
39 filfi 17554 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( fi `  F )  =  F )
4023, 39syl 15 . . . . . 6  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( fi `  F )  =  F )
4138, 40sseqtrd 3214 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) ) )  C_  F )
4241sseld 3179 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( (/) 
e.  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) )  ->  (/)  e.  F
) )
4325, 42mtod 168 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  -.  (/) 
e.  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) ) )
44 cmpfii 17136 . . 3  |-  ( ( J  e.  Comp  /\  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) ) )  ->  |^| ran  ( x  e.  F  |->  ( ( cls `  J ) `  x
) )  =/=  (/) )
4512, 22, 43, 44syl3anc 1182 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  |^| ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  =/=  (/) )
4611, 45eqnetrd 2464 1  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   (/)c0 3455   ifcif 3565   U.cuni 3827   |^|cint 3862   |^|_ciin 3906    e. cmpt 4077   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   ficfi 7164   Topctop 16631   Clsdccld 16753   clsccl 16755   Compccmp 17113   Filcfil 17540    fClus cfcls 17631
This theorem is referenced by:  fclscmp  17725  ufilcmp  17727  relcmpcmet  18742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-top 16636  df-cld 16756  df-cls 16758  df-cmp 17114  df-fbas 17520  df-fil 17541  df-fcls 17636
  Copyright terms: Public domain W3C validator