MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmpi Unicode version

Theorem fclscmpi 17740
Description: Forward direction of fclscmp 17741. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x  |-  X  = 
U. J
Assertion
Ref Expression
fclscmpi  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  =/=  (/) )

Proof of Theorem fclscmpi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cmptop 17138 . . . 4  |-  ( J  e.  Comp  ->  J  e. 
Top )
2 flimfnfcls.x . . . . . 6  |-  X  = 
U. J
32fclsval 17719 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  -> 
( J  fClus  F )  =  if ( X  =  X ,  |^|_ x  e.  F  ( ( cls `  J ) `
 x ) ,  (/) ) )
4 eqid 2296 . . . . . 6  |-  X  =  X
5 iftrue 3584 . . . . . 6  |-  ( X  =  X  ->  if ( X  =  X ,  |^|_ x  e.  F  ( ( cls `  J
) `  x ) ,  (/) )  =  |^|_ x  e.  F  ( ( cls `  J ) `
 x ) )
64, 5ax-mp 8 . . . . 5  |-  if ( X  =  X ,  |^|_ x  e.  F  ( ( cls `  J
) `  x ) ,  (/) )  =  |^|_ x  e.  F  ( ( cls `  J ) `
 x )
73, 6syl6eq 2344 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  -> 
( J  fClus  F )  =  |^|_ x  e.  F  ( ( cls `  J
) `  x )
)
81, 7sylan 457 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  = 
|^|_ x  e.  F  ( ( cls `  J
) `  x )
)
9 fvex 5555 . . . 4  |-  ( ( cls `  J ) `
 x )  e. 
_V
109dfiin3 4950 . . 3  |-  |^|_ x  e.  F  ( ( cls `  J ) `  x )  =  |^| ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)
118, 10syl6eq 2344 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  = 
|^| ran  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) ) )
12 simpl 443 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  J  e.  Comp )
1312adantr 451 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  J  e.  Comp )
1413, 1syl 15 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  J  e.  Top )
15 filelss 17563 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  x  e.  F )  ->  x  C_  X )
1615adantll 694 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  x  C_  X )
172clscld 16800 . . . . . 6  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( cls `  J
) `  x )  e.  ( Clsd `  J
) )
1814, 16, 17syl2anc 642 . . . . 5  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  ( ( cls `  J
) `  x )  e.  ( Clsd `  J
) )
19 eqid 2296 . . . . 5  |-  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) )  =  ( x  e.  F  |->  ( ( cls `  J ) `  x
) )
2018, 19fmptd 5700 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> ( Clsd `  J ) )
21 frn 5411 . . . 4  |-  ( ( x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> ( Clsd `  J )  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  ( Clsd `  J ) )
2220, 21syl 15 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  ( Clsd `  J ) )
23 simpr 447 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  F  e.  ( Fil `  X
) )
24 0nelfil 17560 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  -.  (/)  e.  F
)
2523, 24syl 15 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  -.  (/) 
e.  F )
2623adantr 451 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  F  e.  ( Fil `  X ) )
27 simpr 447 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  x  e.  F )
282clsss3 16812 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( cls `  J
) `  x )  C_  X )
2914, 16, 28syl2anc 642 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  ( ( cls `  J
) `  x )  C_  X )
302sscls 16809 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  x  C_  X )  ->  x  C_  ( ( cls `  J ) `  x
) )
3114, 16, 30syl2anc 642 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  x  C_  ( ( cls `  J ) `  x ) )
32 filss 17564 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  ( ( cls `  J
) `  x )  C_  X  /\  x  C_  ( ( cls `  J
) `  x )
) )  ->  (
( cls `  J
) `  x )  e.  F )
3326, 27, 29, 31, 32syl13anc 1184 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  F  e.  ( Fil `  X ) )  /\  x  e.  F )  ->  ( ( cls `  J
) `  x )  e.  F )
3433, 19fmptd 5700 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> F )
35 frn 5411 . . . . . . . 8  |-  ( ( x  e.  F  |->  ( ( cls `  J
) `  x )
) : F --> F  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  F )
3634, 35syl 15 . . . . . . 7  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  F )
37 fiss 7193 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  F )  ->  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) )  C_  ( fi `  F ) )
3823, 36, 37syl2anc 642 . . . . . 6  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) ) )  C_  ( fi `  F ) )
39 filfi 17570 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( fi `  F )  =  F )
4023, 39syl 15 . . . . . 6  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( fi `  F )  =  F )
4138, 40sseqtrd 3227 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J ) `
 x ) ) )  C_  F )
4241sseld 3192 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( (/) 
e.  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) )  ->  (/)  e.  F
) )
4325, 42mtod 168 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  -.  (/) 
e.  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) ) )
44 cmpfii 17152 . . 3  |-  ( ( J  e.  Comp  /\  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  C_  ( Clsd `  J )  /\  -.  (/) 
e.  ( fi `  ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
) ) )  ->  |^| ran  ( x  e.  F  |->  ( ( cls `  J ) `  x
) )  =/=  (/) )
4512, 22, 43, 44syl3anc 1182 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  |^| ran  ( x  e.  F  |->  ( ( cls `  J
) `  x )
)  =/=  (/) )
4611, 45eqnetrd 2477 1  |-  ( ( J  e.  Comp  /\  F  e.  ( Fil `  X
) )  ->  ( J  fClus  F )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459    C_ wss 3165   (/)c0 3468   ifcif 3578   U.cuni 3843   |^|cint 3878   |^|_ciin 3922    e. cmpt 4093   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   ficfi 7180   Topctop 16647   Clsdccld 16769   clsccl 16771   Compccmp 17129   Filcfil 17556    fClus cfcls 17647
This theorem is referenced by:  fclscmp  17741  ufilcmp  17743  relcmpcmet  18758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-top 16652  df-cld 16772  df-cls 16774  df-cmp 17130  df-fbas 17536  df-fil 17557  df-fcls 17652
  Copyright terms: Public domain W3C validator