MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclselbas Unicode version

Theorem fclselbas 18005
Description: A cluster point is in the base set. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
fclselbas.1  |-  X  = 
U. J
Assertion
Ref Expression
fclselbas  |-  ( A  e.  ( J  fClus  F )  ->  A  e.  X )

Proof of Theorem fclselbas
Dummy variables  o 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fclselbas.1 . . . . . 6  |-  X  = 
U. J
21fclsfil 17999 . . . . 5  |-  ( A  e.  ( J  fClus  F )  ->  F  e.  ( Fil `  X ) )
3 fclstopon 18001 . . . . 5  |-  ( A  e.  ( J  fClus  F )  ->  ( J  e.  (TopOn `  X )  <->  F  e.  ( Fil `  X
) ) )
42, 3mpbird 224 . . . 4  |-  ( A  e.  ( J  fClus  F )  ->  J  e.  (TopOn `  X ) )
5 fclsopn 18003 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
64, 2, 5syl2anc 643 . . 3  |-  ( A  e.  ( J  fClus  F )  ->  ( A  e.  ( J  fClus  F )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s
)  =/=  (/) ) ) ) )
76ibi 233 . 2  |-  ( A  e.  ( J  fClus  F )  ->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
87simpld 446 1  |-  ( A  e.  ( J  fClus  F )  ->  A  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670    i^i cin 3283   (/)c0 3592   U.cuni 3979   ` cfv 5417  (class class class)co 6044  TopOnctopon 16918   Filcfil 17834    fClus cfcls 17925
This theorem is referenced by:  fclsneii  18006  fclsnei  18008  fclsfnflim  18016  flimfnfcls  18017  fcfelbas  18025  cnfcf  18031  cfilfcls  19184
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-fbas 16658  df-top 16922  df-topon 16925  df-cld 17042  df-ntr 17043  df-cls 17044  df-fil 17835  df-fcls 17930
  Copyright terms: Public domain W3C validator