MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfnflim Structured version   Unicode version

Theorem fclsfnflim 18090
Description: A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsfnflim  |-  ( F  e.  ( Fil `  X
)  ->  ( A  e.  ( J  fClus  F )  <->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) ) )
Distinct variable groups:    A, g    g, F    g, J    g, X

Proof of Theorem fclsfnflim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filsspw 17914 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
21adantr 453 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  C_  ~P X )
3 fclstop 18074 . . . . . . . . . 10  |-  ( A  e.  ( J  fClus  F )  ->  J  e.  Top )
43adantl 454 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  J  e.  Top )
5 eqid 2442 . . . . . . . . . 10  |-  U. J  =  U. J
65neisspw 17202 . . . . . . . . 9  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { A } )  C_  ~P U. J )
74, 6syl 16 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ~P U. J )
8 filunibas 17944 . . . . . . . . . 10  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
95fclsfil 18073 . . . . . . . . . . 11  |-  ( A  e.  ( J  fClus  F )  ->  F  e.  ( Fil `  U. J
) )
10 filunibas 17944 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  U. J )  ->  U. F  =  U. J )
119, 10syl 16 . . . . . . . . . 10  |-  ( A  e.  ( J  fClus  F )  ->  U. F  = 
U. J )
128, 11sylan9req 2495 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  X  =  U. J )
1312pweqd 3828 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ~P X  =  ~P U. J )
147, 13sseqtr4d 3371 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ~P X )
152, 14unssd 3509 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  C_  ~P X )
16 ssun1 3496 . . . . . . . 8  |-  F  C_  ( F  u.  (
( nei `  J
) `  { A } ) )
17 filn0 17925 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
18 ssn0 3645 . . . . . . . 8  |-  ( ( F  C_  ( F  u.  ( ( nei `  J
) `  { A } ) )  /\  F  =/=  (/) )  ->  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/) )
1916, 17, 18sylancr 646 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  =/=  (/) )
2019adantr 453 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  =/=  (/) )
21 incom 3519 . . . . . . . . . . . 12  |-  ( y  i^i  x )  =  ( x  i^i  y
)
22 fclsneii 18080 . . . . . . . . . . . 12  |-  ( ( A  e.  ( J 
fClus  F )  /\  y  e.  ( ( nei `  J
) `  { A } )  /\  x  e.  F )  ->  (
y  i^i  x )  =/=  (/) )
2321, 22syl5eqner 2632 . . . . . . . . . . 11  |-  ( ( A  e.  ( J 
fClus  F )  /\  y  e.  ( ( nei `  J
) `  { A } )  /\  x  e.  F )  ->  (
x  i^i  y )  =/=  (/) )
24233com23 1160 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fClus  F )  /\  x  e.  F  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( x  i^i  y
)  =/=  (/) )
25243expb 1155 . . . . . . . . 9  |-  ( ( A  e.  ( J 
fClus  F )  /\  (
x  e.  F  /\  y  e.  ( ( nei `  J ) `  { A } ) ) )  ->  ( x  i^i  y )  =/=  (/) )
2625adantll 696 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F )
)  /\  ( x  e.  F  /\  y  e.  ( ( nei `  J
) `  { A } ) ) )  ->  ( x  i^i  y )  =/=  (/) )
2726ralrimivva 2804 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A. x  e.  F  A. y  e.  ( ( nei `  J
) `  { A } ) ( x  i^i  y )  =/=  (/) )
28 filfbas 17911 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2928adantr 453 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  e.  ( fBas `  X )
)
30 istopon 17021 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  <->  ( J  e. 
Top  /\  X  =  U. J ) )
314, 12, 30sylanbrc 647 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  J  e.  (TopOn `  X ) )
325fclselbas 18079 . . . . . . . . . . . . 13  |-  ( A  e.  ( J  fClus  F )  ->  A  e.  U. J )
3332adantl 454 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A  e.  U. J )
3433, 12eleqtrrd 2519 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A  e.  X )
3534snssd 3967 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  { A }  C_  X )
36 snnzg 3945 . . . . . . . . . . 11  |-  ( A  e.  ( J  fClus  F )  ->  { A }  =/=  (/) )
3736adantl 454 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  { A }  =/=  (/) )
38 neifil 17943 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X  /\  { A }  =/=  (/) )  -> 
( ( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
3931, 35, 37, 38syl3anc 1185 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  e.  ( Fil `  X
) )
40 filfbas 17911 . . . . . . . . 9  |-  ( ( ( nei `  J
) `  { A } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  { A } )  e.  (
fBas `  X )
)
4139, 40syl 16 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  e.  ( fBas `  X
) )
42 fbunfip 17932 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  (
( nei `  J
) `  { A } )  e.  (
fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) )  <->  A. x  e.  F  A. y  e.  (
( nei `  J
) `  { A } ) ( x  i^i  y )  =/=  (/) ) )
4329, 41, 42syl2anc 644 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( -.  (/) 
e.  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) )  <->  A. x  e.  F  A. y  e.  (
( nei `  J
) `  { A } ) ( x  i^i  y )  =/=  (/) ) )
4427, 43mpbird 225 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
45 filtop 17918 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
46 fsubbas 17930 . . . . . . . 8  |-  ( X  e.  F  ->  (
( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) )  e.  ( fBas `  X )  <->  ( ( F  u.  ( ( nei `  J ) `  { A } ) ) 
C_  ~P X  /\  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
4745, 46syl 16 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( ( fi `  ( F  u.  ( ( nei `  J
) `  { A } ) ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  ( ( nei `  J ) `  { A } ) )  C_  ~P X  /\  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
4847adantr 453 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( fi `  ( F  u.  ( ( nei `  J
) `  { A } ) ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  ( ( nei `  J ) `  { A } ) )  C_  ~P X  /\  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
4915, 20, 44, 48mpbir3and 1138 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) )  e.  ( fBas `  X
) )
50 fgcl 17941 . . . . 5  |-  ( ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  e.  ( Fil `  X ) )
5149, 50syl 16 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  e.  ( Fil `  X ) )
52 fvex 5771 . . . . . . . . 9  |-  ( ( nei `  J ) `
 { A }
)  e.  _V
53 unexg 4739 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
( nei `  J
) `  { A } )  e.  _V )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  e. 
_V )
5452, 53mpan2 654 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  e. 
_V )
55 ssfii 7453 . . . . . . . 8  |-  ( ( F  u.  ( ( nei `  J ) `
 { A }
) )  e.  _V  ->  ( F  u.  (
( nei `  J
) `  { A } ) )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
5654, 55syl 16 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
5756adantr 453 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
5857unssad 3510 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  C_  ( fi `  ( F  u.  ( ( nei `  J
) `  { A } ) ) ) )
59 ssfg 17935 . . . . . 6  |-  ( ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) )  e.  ( fBas `  X
)  ->  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) 
C_  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) )
6049, 59syl 16 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) 
C_  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) )
6158, 60sstrd 3344 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) )
6257unssbd 3511 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
6362, 60sstrd 3344 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) )
64 elflim 18034 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) )  e.  ( Fil `  X ) )  -> 
( A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) )
6531, 51, 64syl2anc 644 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) )
6634, 63, 65mpbir2and 890 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A  e.  ( J  fLim  ( X
filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
67 sseq2 3356 . . . . . 6  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( F  C_  g  <->  F  C_  ( X
filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
68 oveq2 6118 . . . . . . 7  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( J  fLim  g )  =  ( J  fLim  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
6968eleq2d 2509 . . . . . 6  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( A  e.  ( J  fLim  g
)  <->  A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) ) )
7067, 69anbi12d 693 . . . . 5  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( ( F  C_  g  /\  A  e.  ( J  fLim  g
) )  <->  ( F  C_  ( X filGen ( fi
`  ( F  u.  ( ( nei `  J
) `  { A } ) ) ) )  /\  A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) ) )
7170rspcev 3058 . . . 4  |-  ( ( ( X filGen ( fi
`  ( F  u.  ( ( nei `  J
) `  { A } ) ) ) )  e.  ( Fil `  X )  /\  ( F  C_  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  /\  A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) )  ->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) )
7251, 61, 66, 71syl12anc 1183 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  E. g  e.  ( Fil `  X
) ( F  C_  g  /\  A  e.  ( J  fLim  g )
) )
7372ex 425 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( A  e.  ( J  fClus  F )  ->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) ) )
74 simprl 734 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  g  e.  ( Fil `  X ) )
75 simprrr 743 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  A  e.  ( J  fLim  g )
)
76 flimtopon 18033 . . . . . . 7  |-  ( A  e.  ( J  fLim  g )  ->  ( J  e.  (TopOn `  X )  <->  g  e.  ( Fil `  X
) ) )
7775, 76syl 16 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  ( J  e.  (TopOn `  X )  <->  g  e.  ( Fil `  X
) ) )
7874, 77mpbird 225 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  J  e.  (TopOn `  X ) )
79 simpl 445 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  F  e.  ( Fil `  X ) )
80 simprrl 742 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  F  C_  g
)
81 fclsss2 18086 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  g
)  ->  ( J  fClus  g )  C_  ( J  fClus  F ) )
8278, 79, 80, 81syl3anc 1185 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  ( J  fClus  g )  C_  ( J  fClus  F ) )
83 flimfcls 18089 . . . . 5  |-  ( J 
fLim  g )  C_  ( J  fClus  g )
8483, 75sseldi 3332 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  A  e.  ( J  fClus  g )
)
8582, 84sseldd 3335 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  A  e.  ( J  fClus  F )
)
8685rexlimdvaa 2837 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( E. g  e.  ( Fil `  X ) ( F 
C_  g  /\  A  e.  ( J  fLim  g
) )  ->  A  e.  ( J  fClus  F ) ) )
8773, 86impbid 185 1  |-  ( F  e.  ( Fil `  X
)  ->  ( A  e.  ( J  fClus  F )  <->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727    =/= wne 2605   A.wral 2711   E.wrex 2712   _Vcvv 2962    u. cun 3304    i^i cin 3305    C_ wss 3306   (/)c0 3613   ~Pcpw 3823   {csn 3838   U.cuni 4039   ` cfv 5483  (class class class)co 6110   ficfi 7444   fBascfbas 16720   filGencfg 16721   Topctop 16989  TopOnctopon 16990   neicnei 17192   Filcfil 17908    fLim cflim 17997    fClus cfcls 17999
This theorem is referenced by:  uffclsflim  18094  cnpfcfi  18103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-en 7139  df-fin 7142  df-fi 7445  df-fbas 16730  df-fg 16731  df-top 16994  df-topon 16997  df-cld 17114  df-ntr 17115  df-cls 17116  df-nei 17193  df-fil 17909  df-flim 18002  df-fcls 18004
  Copyright terms: Public domain W3C validator