MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfnflim Unicode version

Theorem fclsfnflim 17818
Description: A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsfnflim  |-  ( F  e.  ( Fil `  X
)  ->  ( A  e.  ( J  fClus  F )  <->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) ) )
Distinct variable groups:    A, g    g, F    g, J    g, X

Proof of Theorem fclsfnflim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filsspw 17642 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
21adantr 451 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  C_  ~P X )
3 fclstop 17802 . . . . . . . . . 10  |-  ( A  e.  ( J  fClus  F )  ->  J  e.  Top )
43adantl 452 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  J  e.  Top )
5 eqid 2358 . . . . . . . . . 10  |-  U. J  =  U. J
65neisspw 16944 . . . . . . . . 9  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { A } )  C_  ~P U. J )
74, 6syl 15 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ~P U. J )
8 filunibas 17672 . . . . . . . . . 10  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
95fclsfil 17801 . . . . . . . . . . 11  |-  ( A  e.  ( J  fClus  F )  ->  F  e.  ( Fil `  U. J
) )
10 filunibas 17672 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  U. J )  ->  U. F  =  U. J )
119, 10syl 15 . . . . . . . . . 10  |-  ( A  e.  ( J  fClus  F )  ->  U. F  = 
U. J )
128, 11sylan9req 2411 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  X  =  U. J )
1312pweqd 3706 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ~P X  =  ~P U. J )
147, 13sseqtr4d 3291 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ~P X )
152, 14unssd 3427 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  C_  ~P X )
16 ssun1 3414 . . . . . . . 8  |-  F  C_  ( F  u.  (
( nei `  J
) `  { A } ) )
17 filn0 17653 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
18 ssn0 3563 . . . . . . . 8  |-  ( ( F  C_  ( F  u.  ( ( nei `  J
) `  { A } ) )  /\  F  =/=  (/) )  ->  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/) )
1916, 17, 18sylancr 644 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  =/=  (/) )
2019adantr 451 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  =/=  (/) )
21 incom 3437 . . . . . . . . . . . 12  |-  ( y  i^i  x )  =  ( x  i^i  y
)
22 fclsneii 17808 . . . . . . . . . . . 12  |-  ( ( A  e.  ( J 
fClus  F )  /\  y  e.  ( ( nei `  J
) `  { A } )  /\  x  e.  F )  ->  (
y  i^i  x )  =/=  (/) )
2321, 22syl5eqner 2546 . . . . . . . . . . 11  |-  ( ( A  e.  ( J 
fClus  F )  /\  y  e.  ( ( nei `  J
) `  { A } )  /\  x  e.  F )  ->  (
x  i^i  y )  =/=  (/) )
24233com23 1157 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fClus  F )  /\  x  e.  F  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( x  i^i  y
)  =/=  (/) )
25243expb 1152 . . . . . . . . 9  |-  ( ( A  e.  ( J 
fClus  F )  /\  (
x  e.  F  /\  y  e.  ( ( nei `  J ) `  { A } ) ) )  ->  ( x  i^i  y )  =/=  (/) )
2625adantll 694 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F )
)  /\  ( x  e.  F  /\  y  e.  ( ( nei `  J
) `  { A } ) ) )  ->  ( x  i^i  y )  =/=  (/) )
2726ralrimivva 2711 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A. x  e.  F  A. y  e.  ( ( nei `  J
) `  { A } ) ( x  i^i  y )  =/=  (/) )
28 filfbas 17639 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2928adantr 451 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  e.  ( fBas `  X )
)
30 istopon 16763 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  <->  ( J  e. 
Top  /\  X  =  U. J ) )
314, 12, 30sylanbrc 645 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  J  e.  (TopOn `  X ) )
325fclselbas 17807 . . . . . . . . . . . . 13  |-  ( A  e.  ( J  fClus  F )  ->  A  e.  U. J )
3332adantl 452 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A  e.  U. J )
3433, 12eleqtrrd 2435 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A  e.  X )
3534snssd 3839 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  { A }  C_  X )
36 snnzg 3819 . . . . . . . . . . 11  |-  ( A  e.  ( J  fClus  F )  ->  { A }  =/=  (/) )
3736adantl 452 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  { A }  =/=  (/) )
38 neifil 17671 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X  /\  { A }  =/=  (/) )  -> 
( ( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
3931, 35, 37, 38syl3anc 1182 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  e.  ( Fil `  X
) )
40 filfbas 17639 . . . . . . . . 9  |-  ( ( ( nei `  J
) `  { A } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  { A } )  e.  (
fBas `  X )
)
4139, 40syl 15 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  e.  ( fBas `  X
) )
42 fbunfip 17660 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  (
( nei `  J
) `  { A } )  e.  (
fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) )  <->  A. x  e.  F  A. y  e.  (
( nei `  J
) `  { A } ) ( x  i^i  y )  =/=  (/) ) )
4329, 41, 42syl2anc 642 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( -.  (/) 
e.  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) )  <->  A. x  e.  F  A. y  e.  (
( nei `  J
) `  { A } ) ( x  i^i  y )  =/=  (/) ) )
4427, 43mpbird 223 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
45 filtop 17646 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
46 fsubbas 17658 . . . . . . . 8  |-  ( X  e.  F  ->  (
( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) )  e.  ( fBas `  X )  <->  ( ( F  u.  ( ( nei `  J ) `  { A } ) ) 
C_  ~P X  /\  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
4745, 46syl 15 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( ( fi `  ( F  u.  ( ( nei `  J
) `  { A } ) ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  ( ( nei `  J ) `  { A } ) )  C_  ~P X  /\  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
4847adantr 451 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( fi `  ( F  u.  ( ( nei `  J
) `  { A } ) ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  ( ( nei `  J ) `  { A } ) )  C_  ~P X  /\  ( F  u.  ( ( nei `  J ) `  { A } ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
4915, 20, 44, 48mpbir3and 1135 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) )  e.  ( fBas `  X
) )
50 fgcl 17669 . . . . 5  |-  ( ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  e.  ( Fil `  X ) )
5149, 50syl 15 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  e.  ( Fil `  X ) )
52 fvex 5619 . . . . . . . . 9  |-  ( ( nei `  J ) `
 { A }
)  e.  _V
53 unexg 4600 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
( nei `  J
) `  { A } )  e.  _V )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  e. 
_V )
5452, 53mpan2 652 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  e. 
_V )
55 ssfii 7259 . . . . . . . 8  |-  ( ( F  u.  ( ( nei `  J ) `
 { A }
) )  e.  _V  ->  ( F  u.  (
( nei `  J
) `  { A } ) )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
5654, 55syl 15 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
5756adantr 451 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( F  u.  ( ( nei `  J
) `  { A } ) )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
5816, 57syl5ss 3266 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  C_  ( fi `  ( F  u.  ( ( nei `  J
) `  { A } ) ) ) )
59 ssfg 17663 . . . . . 6  |-  ( ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) )  e.  ( fBas `  X
)  ->  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) 
C_  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) )
6049, 59syl 15 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) 
C_  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) )
6158, 60sstrd 3265 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  F  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) )
62 ssun2 3415 . . . . . . 7  |-  ( ( nei `  J ) `
 { A }
)  C_  ( F  u.  ( ( nei `  J
) `  { A } ) )
6362, 57syl5ss 3266 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )
6463, 60sstrd 3265 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( ( nei `  J ) `  { A } )  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) )
65 elflim 17762 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) )  e.  ( Fil `  X ) )  -> 
( A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) )
6631, 51, 65syl2anc 642 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  ( A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) )
6734, 64, 66mpbir2and 888 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  A  e.  ( J  fLim  ( X
filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
68 sseq2 3276 . . . . . 6  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( F  C_  g  <->  F  C_  ( X
filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
69 oveq2 5950 . . . . . . 7  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( J  fLim  g )  =  ( J  fLim  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) )
7069eleq2d 2425 . . . . . 6  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( A  e.  ( J  fLim  g
)  <->  A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) ) ) ) )
7168, 70anbi12d 691 . . . . 5  |-  ( g  =  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  ->  ( ( F  C_  g  /\  A  e.  ( J  fLim  g
) )  <->  ( F  C_  ( X filGen ( fi
`  ( F  u.  ( ( nei `  J
) `  { A } ) ) ) )  /\  A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) ) )
7271rspcev 2960 . . . 4  |-  ( ( ( X filGen ( fi
`  ( F  u.  ( ( nei `  J
) `  { A } ) ) ) )  e.  ( Fil `  X )  /\  ( F  C_  ( X filGen ( fi `  ( F  u.  ( ( nei `  J ) `  { A } ) ) ) )  /\  A  e.  ( J  fLim  ( X filGen ( fi `  ( F  u.  (
( nei `  J
) `  { A } ) ) ) ) ) ) )  ->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) )
7351, 61, 67, 72syl12anc 1180 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  ( J  fClus  F ) )  ->  E. g  e.  ( Fil `  X
) ( F  C_  g  /\  A  e.  ( J  fLim  g )
) )
7473ex 423 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( A  e.  ( J  fClus  F )  ->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) ) )
75 simprl 732 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  g  e.  ( Fil `  X ) )
76 simprrr 741 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  A  e.  ( J  fLim  g )
)
77 flimtopon 17761 . . . . . . . 8  |-  ( A  e.  ( J  fLim  g )  ->  ( J  e.  (TopOn `  X )  <->  g  e.  ( Fil `  X
) ) )
7876, 77syl 15 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  ( J  e.  (TopOn `  X )  <->  g  e.  ( Fil `  X
) ) )
7975, 78mpbird 223 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  J  e.  (TopOn `  X ) )
80 simpl 443 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  F  e.  ( Fil `  X ) )
81 simprrl 740 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  F  C_  g
)
82 fclsss2 17814 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  g
)  ->  ( J  fClus  g )  C_  ( J  fClus  F ) )
8379, 80, 81, 82syl3anc 1182 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  ( J  fClus  g )  C_  ( J  fClus  F ) )
84 flimfcls 17817 . . . . . 6  |-  ( J 
fLim  g )  C_  ( J  fClus  g )
8584, 76sseldi 3254 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  A  e.  ( J  fClus  g )
)
8683, 85sseldd 3257 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  (
g  e.  ( Fil `  X )  /\  ( F  C_  g  /\  A  e.  ( J  fLim  g
) ) ) )  ->  A  e.  ( J  fClus  F )
)
8786expr 598 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  g  e.  ( Fil `  X
) )  ->  (
( F  C_  g  /\  A  e.  ( J  fLim  g ) )  ->  A  e.  ( J  fClus  F )
) )
8887rexlimdva 2743 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( E. g  e.  ( Fil `  X ) ( F 
C_  g  /\  A  e.  ( J  fLim  g
) )  ->  A  e.  ( J  fClus  F ) ) )
8974, 88impbid 183 1  |-  ( F  e.  ( Fil `  X
)  ->  ( A  e.  ( J  fClus  F )  <->  E. g  e.  ( Fil `  X ) ( F  C_  g  /\  A  e.  ( J  fLim  g ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   E.wrex 2620   _Vcvv 2864    u. cun 3226    i^i cin 3227    C_ wss 3228   (/)c0 3531   ~Pcpw 3701   {csn 3716   U.cuni 3906   ` cfv 5334  (class class class)co 5942   ficfi 7251   fBascfbas 16465   filGencfg 16466   Topctop 16731  TopOnctopon 16732   neicnei 16934   Filcfil 17636    fLim cflim 17725    fClus cfcls 17727
This theorem is referenced by:  uffclsflim  17822  cnpfcfi  17831
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-en 6949  df-fin 6952  df-fi 7252  df-fbas 16473  df-fg 16474  df-top 16736  df-topon 16739  df-cld 16856  df-ntr 16857  df-cls 16858  df-nei 16935  df-fil 17637  df-flim 17730  df-fcls 17732
  Copyright terms: Public domain W3C validator