MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopni Structured version   Unicode version

Theorem fclsopni 18052
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsopni  |-  ( ( A  e.  ( J 
fClus  F )  /\  ( U  e.  J  /\  A  e.  U  /\  S  e.  F )
)  ->  ( U  i^i  S )  =/=  (/) )

Proof of Theorem fclsopni
Dummy variables  o 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . . . . . 9  |-  U. J  =  U. J
21fclsfil 18047 . . . . . . . 8  |-  ( A  e.  ( J  fClus  F )  ->  F  e.  ( Fil `  U. J
) )
3 fclstopon 18049 . . . . . . . 8  |-  ( A  e.  ( J  fClus  F )  ->  ( J  e.  (TopOn `  U. J )  <-> 
F  e.  ( Fil `  U. J ) ) )
42, 3mpbird 225 . . . . . . 7  |-  ( A  e.  ( J  fClus  F )  ->  J  e.  (TopOn `  U. J ) )
5 fclsopn 18051 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  F  e.  ( Fil `  U. J ) )  -> 
( A  e.  ( J  fClus  F )  <->  ( A  e.  U. J  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s
)  =/=  (/) ) ) ) )
64, 2, 5syl2anc 644 . . . . . 6  |-  ( A  e.  ( J  fClus  F )  ->  ( A  e.  ( J  fClus  F )  <-> 
( A  e.  U. J  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
76ibi 234 . . . . 5  |-  ( A  e.  ( J  fClus  F )  ->  ( A  e.  U. J  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
87simprd 451 . . . 4  |-  ( A  e.  ( J  fClus  F )  ->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
9 eleq2 2499 . . . . . 6  |-  ( o  =  U  ->  ( A  e.  o  <->  A  e.  U ) )
10 ineq1 3537 . . . . . . . 8  |-  ( o  =  U  ->  (
o  i^i  s )  =  ( U  i^i  s ) )
1110neeq1d 2616 . . . . . . 7  |-  ( o  =  U  ->  (
( o  i^i  s
)  =/=  (/)  <->  ( U  i^i  s )  =/=  (/) ) )
1211ralbidv 2727 . . . . . 6  |-  ( o  =  U  ->  ( A. s  e.  F  ( o  i^i  s
)  =/=  (/)  <->  A. s  e.  F  ( U  i^i  s )  =/=  (/) ) )
139, 12imbi12d 313 . . . . 5  |-  ( o  =  U  ->  (
( A  e.  o  ->  A. s  e.  F  ( o  i^i  s
)  =/=  (/) )  <->  ( A  e.  U  ->  A. s  e.  F  ( U  i^i  s )  =/=  (/) ) ) )
1413rspccv 3051 . . . 4  |-  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) )  ->  ( U  e.  J  ->  ( A  e.  U  ->  A. s  e.  F  ( U  i^i  s
)  =/=  (/) ) ) )
158, 14syl 16 . . 3  |-  ( A  e.  ( J  fClus  F )  ->  ( U  e.  J  ->  ( A  e.  U  ->  A. s  e.  F  ( U  i^i  s )  =/=  (/) ) ) )
16 ineq2 3538 . . . . 5  |-  ( s  =  S  ->  ( U  i^i  s )  =  ( U  i^i  S
) )
1716neeq1d 2616 . . . 4  |-  ( s  =  S  ->  (
( U  i^i  s
)  =/=  (/)  <->  ( U  i^i  S )  =/=  (/) ) )
1817rspccv 3051 . . 3  |-  ( A. s  e.  F  ( U  i^i  s )  =/=  (/)  ->  ( S  e.  F  ->  ( U  i^i  S )  =/=  (/) ) )
1915, 18syl8 68 . 2  |-  ( A  e.  ( J  fClus  F )  ->  ( U  e.  J  ->  ( A  e.  U  ->  ( S  e.  F  ->  ( U  i^i  S )  =/=  (/) ) ) ) )
20193imp2 1169 1  |-  ( ( A  e.  ( J 
fClus  F )  /\  ( U  e.  J  /\  A  e.  U  /\  S  e.  F )
)  ->  ( U  i^i  S )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707    i^i cin 3321   (/)c0 3630   U.cuni 4017   ` cfv 5457  (class class class)co 6084  TopOnctopon 16964   Filcfil 17882    fClus cfcls 17973
This theorem is referenced by:  fclsneii  18054  supnfcls  18057  flimfnfcls  18065  cfilfcls  19232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-fbas 16704  df-top 16968  df-topon 16971  df-cld 17088  df-ntr 17089  df-cls 17090  df-fil 17883  df-fcls 17978
  Copyright terms: Public domain W3C validator