MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsss2 Unicode version

Theorem fclsss2 17718
Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsss2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( J  fClus  G )  C_  ( J  fClus  F ) )

Proof of Theorem fclsss2
Dummy variables  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 960 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  F  C_  G
)
2 ssralv 3237 . . . . . 6  |-  ( F 
C_  G  ->  ( A. s  e.  G  x  e.  ( ( cls `  J ) `  s )  ->  A. s  e.  F  x  e.  ( ( cls `  J
) `  s )
) )
31, 2syl 15 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  ( A. s  e.  G  x  e.  ( ( cls `  J
) `  s )  ->  A. s  e.  F  x  e.  ( ( cls `  J ) `  s ) ) )
4 simpl1 958 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  J  e.  (TopOn `  X ) )
5 fclstopon 17707 . . . . . . . 8  |-  ( x  e.  ( J  fClus  G )  ->  ( J  e.  (TopOn `  X )  <->  G  e.  ( Fil `  X
) ) )
65adantl 452 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  ( J  e.  (TopOn `  X )  <->  G  e.  ( Fil `  X
) ) )
74, 6mpbid 201 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  G  e.  ( Fil `  X ) )
8 isfcls2 17708 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  G  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fClus  G )  <->  A. s  e.  G  x  e.  ( ( cls `  J
) `  s )
) )
94, 7, 8syl2anc 642 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  ( x  e.  ( J  fClus  G )  <->  A. s  e.  G  x  e.  ( ( cls `  J ) `  s ) ) )
10 simpl2 959 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  F  e.  ( Fil `  X ) )
11 isfcls2 17708 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fClus  F )  <->  A. s  e.  F  x  e.  ( ( cls `  J
) `  s )
) )
124, 10, 11syl2anc 642 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  ( x  e.  ( J  fClus  F )  <->  A. s  e.  F  x  e.  ( ( cls `  J ) `  s ) ) )
133, 9, 123imtr4d 259 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  /\  x  e.  ( J  fClus  G ) )  ->  ( x  e.  ( J  fClus  G )  ->  x  e.  ( J  fClus  F )
) )
1413ex 423 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( x  e.  ( J  fClus  G )  ->  ( x  e.  ( J  fClus  G )  ->  x  e.  ( J  fClus  F )
) ) )
1514pm2.43d 44 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( x  e.  ( J  fClus  G )  ->  x  e.  ( J  fClus  F )
) )
1615ssrdv 3185 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( J  fClus  G )  C_  ( J  fClus  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   A.wral 2543    C_ wss 3152   ` cfv 5255  (class class class)co 5858  TopOnctopon 16632   clsccl 16755   Filcfil 17540    fClus cfcls 17631
This theorem is referenced by:  fclsfnflim  17722  ufilcmp  17727  cnpfcfi  17735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-topon 16639  df-fbas 17520  df-fil 17541  df-fcls 17636
  Copyright terms: Public domain W3C validator