MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsval Unicode version

Theorem fclsval 17719
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x  |-  X  = 
U. J
Assertion
Ref Expression
fclsval  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( J  fClus  F )  =  if ( X  =  Y ,  |^|_ t  e.  F  (
( cls `  J
) `  t ) ,  (/) ) )
Distinct variable groups:    t, F    t, J
Allowed substitution hints:    X( t)    Y( t)

Proof of Theorem fclsval
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  J  e.  Top )
2 fvssunirn 5567 . . . . 5  |-  ( Fil `  Y )  C_  U. ran  Fil
32sseli 3189 . . . 4  |-  ( F  e.  ( Fil `  Y
)  ->  F  e.  U.
ran  Fil )
43adantl 452 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  F  e.  U. ran  Fil )
5 filn0 17573 . . . . . 6  |-  ( F  e.  ( Fil `  Y
)  ->  F  =/=  (/) )
65adantl 452 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  F  =/=  (/) )
7 fvex 5555 . . . . . 6  |-  ( ( cls `  J ) `
 t )  e. 
_V
87rgenw 2623 . . . . 5  |-  A. t  e.  F  ( ( cls `  J ) `  t )  e.  _V
9 iinexg 4187 . . . . 5  |-  ( ( F  =/=  (/)  /\  A. t  e.  F  (
( cls `  J
) `  t )  e.  _V )  ->  |^|_ t  e.  F  ( ( cls `  J ) `  t )  e.  _V )
106, 8, 9sylancl 643 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  |^|_ t  e.  F  ( ( cls `  J
) `  t )  e.  _V )
11 0ex 4166 . . . 4  |-  (/)  e.  _V
12 ifcl 3614 . . . 4  |-  ( (
|^|_ t  e.  F  ( ( cls `  J
) `  t )  e.  _V  /\  (/)  e.  _V )  ->  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J
) `  t ) ,  (/) )  e.  _V )
1310, 11, 12sylancl 643 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J ) `  t
) ,  (/) )  e. 
_V )
14 unieq 3852 . . . . . . 7  |-  ( j  =  J  ->  U. j  =  U. J )
15 fclsval.x . . . . . . 7  |-  X  = 
U. J
1614, 15syl6eqr 2346 . . . . . 6  |-  ( j  =  J  ->  U. j  =  X )
17 unieq 3852 . . . . . 6  |-  ( f  =  F  ->  U. f  =  U. F )
1816, 17eqeqan12d 2311 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ( U. j  = 
U. f  <->  X  =  U. F ) )
19 iineq1 3935 . . . . . . 7  |-  ( f  =  F  ->  |^|_ t  e.  f  ( ( cls `  j ) `  t )  =  |^|_ t  e.  F  (
( cls `  j
) `  t )
)
2019adantl 452 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  -> 
|^|_ t  e.  f  ( ( cls `  j
) `  t )  =  |^|_ t  e.  F  ( ( cls `  j
) `  t )
)
21 simpll 730 . . . . . . . . 9  |-  ( ( ( j  =  J  /\  f  =  F )  /\  t  e.  F )  ->  j  =  J )
2221fveq2d 5545 . . . . . . . 8  |-  ( ( ( j  =  J  /\  f  =  F )  /\  t  e.  F )  ->  ( cls `  j )  =  ( cls `  J
) )
2322fveq1d 5543 . . . . . . 7  |-  ( ( ( j  =  J  /\  f  =  F )  /\  t  e.  F )  ->  (
( cls `  j
) `  t )  =  ( ( cls `  J ) `  t
) )
2423iineq2dv 3943 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  -> 
|^|_ t  e.  F  ( ( cls `  j
) `  t )  =  |^|_ t  e.  F  ( ( cls `  J
) `  t )
)
2520, 24eqtrd 2328 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  -> 
|^|_ t  e.  f  ( ( cls `  j
) `  t )  =  |^|_ t  e.  F  ( ( cls `  J
) `  t )
)
26 eqidd 2297 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  -> 
(/)  =  (/) )
2718, 25, 26ifbieq12d 3600 . . . 4  |-  ( ( j  =  J  /\  f  =  F )  ->  if ( U. j  =  U. f ,  |^|_ t  e.  f  (
( cls `  j
) `  t ) ,  (/) )  =  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J ) `  t
) ,  (/) ) )
28 df-fcls 17652 . . . 4  |-  fClus  =  ( j  e.  Top , 
f  e.  U. ran  Fil  |->  if ( U. j  =  U. f ,  |^|_ t  e.  f  (
( cls `  j
) `  t ) ,  (/) ) )
2927, 28ovmpt2ga 5993 . . 3  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil  /\  if ( X  = 
U. F ,  |^|_ t  e.  F  (
( cls `  J
) `  t ) ,  (/) )  e.  _V )  ->  ( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J
) `  t ) ,  (/) ) )
301, 4, 13, 29syl3anc 1182 . 2  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J
) `  t ) ,  (/) ) )
31 filunibas 17592 . . . . 5  |-  ( F  e.  ( Fil `  Y
)  ->  U. F  =  Y )
3231eqeq2d 2307 . . . 4  |-  ( F  e.  ( Fil `  Y
)  ->  ( X  =  U. F  <->  X  =  Y ) )
3332adantl 452 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( X  =  U. F 
<->  X  =  Y ) )
3433ifbid 3596 . 2  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J ) `  t
) ,  (/) )  =  if ( X  =  Y ,  |^|_ t  e.  F  ( ( cls `  J ) `  t ) ,  (/) ) )
3530, 34eqtrd 2328 1  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( J  fClus  F )  =  if ( X  =  Y ,  |^|_ t  e.  F  (
( cls `  J
) `  t ) ,  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801   (/)c0 3468   ifcif 3578   U.cuni 3843   |^|_ciin 3922   ran crn 4706   ` cfv 5271  (class class class)co 5874   Topctop 16647   clsccl 16771   Filcfil 17556    fClus cfcls 17647
This theorem is referenced by:  isfcls  17720  fclscmpi  17740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-fbas 17536  df-fil 17557  df-fcls 17652
  Copyright terms: Public domain W3C validator