Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1 Unicode version

Theorem fcof1 5797
 Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1

Proof of Theorem fcof1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . 2
2 simprr 733 . . . . . . . 8
32fveq2d 5529 . . . . . . 7
4 simpll 730 . . . . . . . 8
5 simprll 738 . . . . . . . 8
6 fvco3 5596 . . . . . . . 8
74, 5, 6syl2anc 642 . . . . . . 7
8 simprlr 739 . . . . . . . 8
9 fvco3 5596 . . . . . . . 8
104, 8, 9syl2anc 642 . . . . . . 7
113, 7, 103eqtr4d 2325 . . . . . 6
12 simplr 731 . . . . . . 7
1312fveq1d 5527 . . . . . 6
1412fveq1d 5527 . . . . . 6
1511, 13, 143eqtr3d 2323 . . . . 5
16 fvresi 5711 . . . . . 6
175, 16syl 15 . . . . 5
18 fvresi 5711 . . . . . 6
198, 18syl 15 . . . . 5
2015, 17, 193eqtr3d 2323 . . . 4
2120expr 598 . . 3
2221ralrimivva 2635 . 2
23 dff13 5783 . 2
241, 22, 23sylanbrc 645 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wceq 1623   wcel 1684  wral 2543   cid 4304   cres 4691   ccom 4693  wf 5251  wf1 5252  cfv 5255 This theorem is referenced by:  fcof1o  5803  injrec2  25119 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fv 5263
 Copyright terms: Public domain W3C validator