MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop2 Unicode version

Theorem fctop2 16798
Description: The finite complement topology on a set  A. Example 3 in [Munkres] p. 77. (This version of fctop 16797 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.)
Assertion
Ref Expression
fctop2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem fctop2
StepHypRef Expression
1 isfinite 7398 . . . . 5  |-  ( ( A  \  x )  e.  Fin  <->  ( A  \  x )  ~<  om )
21orbi1i 506 . . . 4  |-  ( ( ( A  \  x
)  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  x )  ~<  om  \/  x  =  (/) ) )
32a1i 10 . . 3  |-  ( x  e.  ~P A  -> 
( ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) )  <->  ( ( A 
\  x )  ~<  om  \/  x  =  (/) ) ) )
43rabbiia 2812 . 2  |-  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  =  { x  e. 
~P A  |  ( ( A  \  x
)  ~<  om  \/  x  =  (/) ) }
5 fctop 16797 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
64, 5syl5eqelr 2401 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    = wceq 1633    e. wcel 1701   {crab 2581    \ cdif 3183   (/)c0 3489   ~Pcpw 3659   class class class wbr 4060   omcom 4693   ` cfv 5292    ~< csdm 6905   Fincfn 6906  TopOnctopon 16688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-recs 6430  df-rdg 6465  df-oadd 6525  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-top 16692  df-topon 16695
  Copyright terms: Public domain W3C validator