MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdiagfn Unicode version

Theorem fdiagfn 6899
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
Assertion
Ref Expression
fdiagfn  |-  ( ( B  e.  V  /\  I  e.  W )  ->  F : B --> ( B  ^m  I ) )
Distinct variable groups:    x, B    x, I    x, V    x, W
Allowed substitution hint:    F( x)

Proof of Theorem fdiagfn
StepHypRef Expression
1 fconst6g 5513 . . . 4  |-  ( x  e.  B  ->  (
I  X.  { x } ) : I --> B )
21adantl 452 . . 3  |-  ( ( ( B  e.  V  /\  I  e.  W
)  /\  x  e.  B )  ->  (
I  X.  { x } ) : I --> B )
3 elmapg 6873 . . . 4  |-  ( ( B  e.  V  /\  I  e.  W )  ->  ( ( I  X.  { x } )  e.  ( B  ^m  I )  <->  ( I  X.  { x } ) : I --> B ) )
43adantr 451 . . 3  |-  ( ( ( B  e.  V  /\  I  e.  W
)  /\  x  e.  B )  ->  (
( I  X.  {
x } )  e.  ( B  ^m  I
)  <->  ( I  X.  { x } ) : I --> B ) )
52, 4mpbird 223 . 2  |-  ( ( ( B  e.  V  /\  I  e.  W
)  /\  x  e.  B )  ->  (
I  X.  { x } )  e.  ( B  ^m  I ) )
6 fdiagfn.f . 2  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
75, 6fmptd 5767 1  |-  ( ( B  e.  V  /\  I  e.  W )  ->  F : B --> ( B  ^m  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   {csn 3716    e. cmpt 4158    X. cxp 4769   -->wf 5333  (class class class)co 5945    ^m cmap 6860
This theorem is referenced by:  pwsdiagmhm  14544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-map 6862
  Copyright terms: Public domain W3C validator