Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  felapton Unicode version

Theorem felapton 2256
 Description: "Felapton", one of the syllogisms of Aristotelian logic. No is , all is , and some exist, therefore some is not . (In Aristotelian notation, EAO-3: MeP and MaS therefore SoP.) For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
felapton.maj
felapton.min
felapton.e
Assertion
Ref Expression
felapton

Proof of Theorem felapton
StepHypRef Expression
1 felapton.e . 2
2 felapton.min . . . . 5
32spi 1738 . . . 4
4 felapton.maj . . . . 5
54spi 1738 . . . 4
63, 5jca 518 . . 3
76eximi 1563 . 2
81, 7ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358  wal 1527  wex 1528 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
 Copyright terms: Public domain W3C validator