MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23i Unicode version

Theorem feq23i 5385
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq23i.1  |-  A  =  C
feq23i.2  |-  B  =  D
Assertion
Ref Expression
feq23i  |-  ( F : A --> B  <->  F : C
--> D )

Proof of Theorem feq23i
StepHypRef Expression
1 feq23i.1 . 2  |-  A  =  C
2 feq23i.2 . 2  |-  B  =  D
3 feq23 5378 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  F : C --> D ) )
41, 2, 3mp2an 653 1  |-  ( F : A --> B  <->  F : C
--> D )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623   -->wf 5251
This theorem is referenced by:  funcoppc  13749  ismgm  20987  elghom  21030  mbfmvolf  23571  vecval1b  25451  pgapspf  26052  ftp  26893  pwssplit4  27191  tendoset  30948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-in 3159  df-ss 3166  df-fn 5258  df-f 5259
  Copyright terms: Public domain W3C validator