Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqresmpt Structured version   Unicode version

Theorem feqresmpt 5780
 Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
feqmptd.1
feqresmpt.2
Assertion
Ref Expression
feqresmpt
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem feqresmpt
StepHypRef Expression
1 feqmptd.1 . . . 4
2 feqresmpt.2 . . . 4
3 fssres 5610 . . . 4
41, 2, 3syl2anc 643 . . 3
54feqmptd 5779 . 2
6 fvres 5745 . . 3
76mpteq2ia 4291 . 2
85, 7syl6eq 2484 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wss 3320   cmpt 4266   cres 4880  wf 5450  cfv 5454 This theorem is referenced by:  pwfseqlem5  8538  swrd0val  11768  gsumpt  15545  dpjidcl  15616  tsmsxplem2  18183  dvmulbr  19825  dvlip  19877  lhop1lem  19897  loglesqr  20642  jensenlem1  20825  jensen  20827  amgm  20829  coinflippv  24741  ftc1cnnclem  26278  dvreasin  26290  dvreacos  26291  areacirclem1  26292 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462
 Copyright terms: Public domain W3C validator