Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fesapo Structured version   Unicode version

Theorem fesapo 2406
 Description: "Fesapo", one of the syllogisms of Aristotelian logic. No is , all is , and exist, therefore some is not . (In Aristotelian notation, EAO-4: PeM and MaS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
fesapo.maj
fesapo.min
fesapo.e
Assertion
Ref Expression
fesapo

Proof of Theorem fesapo
StepHypRef Expression
1 fesapo.e . 2
2 fesapo.min . . . 4
32spi 1771 . . 3
4 fesapo.maj . . . . 5
54spi 1771 . . . 4
65con2i 115 . . 3
73, 6jca 520 . 2
81, 7eximii 1588 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 360  wal 1550  wex 1551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-11 1763 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
 Copyright terms: Public domain W3C validator