MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feu Unicode version

Theorem feu 5433
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
feu  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Distinct variable groups:    y, F    y, A    y, B    y, C

Proof of Theorem feu
StepHypRef Expression
1 ffn 5405 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 fneu2 5365 . . . 4  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
31, 2sylan 457 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y <. C , 
y >.  e.  F )
4 opelf 5420 . . . . . . . 8  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  ( C  e.  A  /\  y  e.  B )
)
54simprd 449 . . . . . . 7  |-  ( ( F : A --> B  /\  <. C ,  y >.  e.  F )  ->  y  e.  B )
65ex 423 . . . . . 6  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  ->  y  e.  B ) )
76pm4.71rd 616 . . . . 5  |-  ( F : A --> B  -> 
( <. C ,  y
>.  e.  F  <->  ( y  e.  B  /\  <. C , 
y >.  e.  F ) ) )
87eubidv 2164 . . . 4  |-  ( F : A --> B  -> 
( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
98adantr 451 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( E! y <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) ) )
103, 9mpbid 201 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y ( y  e.  B  /\  <. C ,  y >.  e.  F
) )
11 df-reu 2563 . 2  |-  ( E! y  e.  B  <. C ,  y >.  e.  F  <->  E! y ( y  e.  B  /\  <. C , 
y >.  e.  F ) )
1210, 11sylibr 203 1  |-  ( ( F : A --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696   E!weu 2156   E!wreu 2558   <.cop 3656    Fn wfn 5266   -->wf 5267
This theorem is referenced by:  fsn  5712  f1ofveu  6355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275
  Copyright terms: Public domain W3C validator