Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnafv Unicode version

Theorem ffnafv 27184
Description: A function maps to a class to which all values belong, analogous to ffnfv 5723. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
ffnafv  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F''' x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ffnafv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffn 5427 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 fafvelrn 27183 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F''' x )  e.  B
)
32ralrimiva 2660 . . 3  |-  ( F : A --> B  ->  A. x  e.  A  ( F''' x )  e.  B
)
41, 3jca 518 . 2  |-  ( F : A --> B  -> 
( F  Fn  A  /\  A. x  e.  A  ( F''' x )  e.  B
) )
5 simpl 443 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F''' x )  e.  B
)  ->  F  Fn  A )
6 afvelrnb0 27177 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F''' x )  =  y ) )
7 nfra1 2627 . . . . . 6  |-  F/ x A. x  e.  A  ( F''' x )  e.  B
8 nfv 1610 . . . . . 6  |-  F/ x  y  e.  B
9 rsp 2637 . . . . . . 7  |-  ( A. x  e.  A  ( F''' x )  e.  B  ->  ( x  e.  A  ->  ( F''' x )  e.  B
) )
10 eleq1 2376 . . . . . . . 8  |-  ( ( F''' x )  =  y  ->  ( ( F''' x )  e.  B  <->  y  e.  B ) )
1110biimpcd 215 . . . . . . 7  |-  ( ( F''' x )  e.  B  ->  ( ( F''' x )  =  y  ->  y  e.  B ) )
129, 11syl6 29 . . . . . 6  |-  ( A. x  e.  A  ( F''' x )  e.  B  ->  ( x  e.  A  ->  ( ( F''' x )  =  y  ->  y  e.  B ) ) )
137, 8, 12rexlimd 2698 . . . . 5  |-  ( A. x  e.  A  ( F''' x )  e.  B  ->  ( E. x  e.  A  ( F''' x )  =  y  ->  y  e.  B ) )
146, 13sylan9 638 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F''' x )  e.  B
)  ->  ( y  e.  ran  F  ->  y  e.  B ) )
1514ssrdv 3219 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F''' x )  e.  B
)  ->  ran  F  C_  B )
16 df-f 5296 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
175, 15, 16sylanbrc 645 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F''' x )  e.  B
)  ->  F : A
--> B )
184, 17impbii 180 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F''' x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701   A.wral 2577   E.wrex 2578    C_ wss 3186   ran crn 4727    Fn wfn 5287   -->wf 5288  '''cafv 27120
This theorem is referenced by:  ffnaov  27212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-fv 5300  df-dfat 27122  df-afv 27123
  Copyright terms: Public domain W3C validator