MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthf1o Unicode version

Theorem ffthf1o 13809
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
isfth.h  |-  H  =  (  Hom  `  C
)
isfth.j  |-  J  =  (  Hom  `  D
)
ffthf1o.f  |-  ( ph  ->  F ( ( C Full 
D )  i^i  ( C Faith  D ) ) G )
ffthf1o.x  |-  ( ph  ->  X  e.  B )
ffthf1o.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ffthf1o  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) ) )

Proof of Theorem ffthf1o
StepHypRef Expression
1 isfth.b . . 3  |-  B  =  ( Base `  C
)
2 isfth.h . . 3  |-  H  =  (  Hom  `  C
)
3 isfth.j . . 3  |-  J  =  (  Hom  `  D
)
4 ffthf1o.f . . . . 5  |-  ( ph  ->  F ( ( C Full 
D )  i^i  ( C Faith  D ) ) G )
5 brin 4086 . . . . 5  |-  ( F ( ( C Full  D
)  i^i  ( C Faith  D ) ) G  <->  ( F
( C Full  D ) G  /\  F ( C Faith 
D ) G ) )
64, 5sylib 188 . . . 4  |-  ( ph  ->  ( F ( C Full 
D ) G  /\  F ( C Faith  D
) G ) )
76simprd 449 . . 3  |-  ( ph  ->  F ( C Faith  D
) G )
8 ffthf1o.x . . 3  |-  ( ph  ->  X  e.  B )
9 ffthf1o.y . . 3  |-  ( ph  ->  Y  e.  B )
101, 2, 3, 7, 8, 9fthf1 13807 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-> ( ( F `  X
) J ( F `
 Y ) ) )
116simpld 445 . . 3  |-  ( ph  ->  F ( C Full  D
) G )
121, 3, 2, 11, 8, 9fullfo 13802 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )
13 df-f1o 5278 . 2  |-  ( ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) )  <->  ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F `
 X ) J ( F `  Y
) )  /\  ( X G Y ) : ( X H Y ) -onto-> ( ( F `
 X ) J ( F `  Y
) ) ) )
1410, 12, 13sylanbrc 645 1  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    i^i cin 3164   class class class wbr 4039   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164    Hom chom 13235   Full cful 13792   Faith cfth 13793
This theorem is referenced by:  catcisolem  13954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-ixp 6834  df-func 13748  df-full 13794  df-fth 13795
  Copyright terms: Public domain W3C validator