MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthf1o Structured version   Unicode version

Theorem ffthf1o 14109
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
isfth.h  |-  H  =  (  Hom  `  C
)
isfth.j  |-  J  =  (  Hom  `  D
)
ffthf1o.f  |-  ( ph  ->  F ( ( C Full 
D )  i^i  ( C Faith  D ) ) G )
ffthf1o.x  |-  ( ph  ->  X  e.  B )
ffthf1o.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ffthf1o  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) ) )

Proof of Theorem ffthf1o
StepHypRef Expression
1 isfth.b . . 3  |-  B  =  ( Base `  C
)
2 isfth.h . . 3  |-  H  =  (  Hom  `  C
)
3 isfth.j . . 3  |-  J  =  (  Hom  `  D
)
4 ffthf1o.f . . . . 5  |-  ( ph  ->  F ( ( C Full 
D )  i^i  ( C Faith  D ) ) G )
5 brin 4252 . . . . 5  |-  ( F ( ( C Full  D
)  i^i  ( C Faith  D ) ) G  <->  ( F
( C Full  D ) G  /\  F ( C Faith 
D ) G ) )
64, 5sylib 189 . . . 4  |-  ( ph  ->  ( F ( C Full 
D ) G  /\  F ( C Faith  D
) G ) )
76simprd 450 . . 3  |-  ( ph  ->  F ( C Faith  D
) G )
8 ffthf1o.x . . 3  |-  ( ph  ->  X  e.  B )
9 ffthf1o.y . . 3  |-  ( ph  ->  Y  e.  B )
101, 2, 3, 7, 8, 9fthf1 14107 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-> ( ( F `  X
) J ( F `
 Y ) ) )
116simpld 446 . . 3  |-  ( ph  ->  F ( C Full  D
) G )
121, 3, 2, 11, 8, 9fullfo 14102 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )
13 df-f1o 5454 . 2  |-  ( ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) )  <->  ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F `
 X ) J ( F `  Y
) )  /\  ( X G Y ) : ( X H Y ) -onto-> ( ( F `
 X ) J ( F `  Y
) ) ) )
1410, 12, 13sylanbrc 646 1  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    i^i cin 3312   class class class wbr 4205   -1-1->wf1 5444   -onto->wfo 5445   -1-1-onto->wf1o 5446   ` cfv 5447  (class class class)co 6074   Basecbs 13462    Hom chom 13533   Full cful 14092   Faith cfth 14093
This theorem is referenced by:  catcisolem  14254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-map 7013  df-ixp 7057  df-func 14048  df-full 14094  df-fth 14095
  Copyright terms: Public domain W3C validator