MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthiso Unicode version

Theorem ffthiso 13803
Description: A fully faithful functor reflects isomorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b  |-  B  =  ( Base `  C
)
fthmon.h  |-  H  =  (  Hom  `  C
)
fthmon.f  |-  ( ph  ->  F ( C Faith  D
) G )
fthmon.x  |-  ( ph  ->  X  e.  B )
fthmon.y  |-  ( ph  ->  Y  e.  B )
fthmon.r  |-  ( ph  ->  R  e.  ( X H Y ) )
ffthiso.f  |-  ( ph  ->  F ( C Full  D
) G )
ffthiso.s  |-  I  =  (  Iso  `  C
)
ffthiso.t  |-  J  =  (  Iso  `  D
)
Assertion
Ref Expression
ffthiso  |-  ( ph  ->  ( R  e.  ( X I Y )  <-> 
( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) ) )

Proof of Theorem ffthiso
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fthmon.b . . 3  |-  B  =  ( Base `  C
)
2 ffthiso.s . . 3  |-  I  =  (  Iso  `  C
)
3 ffthiso.t . . 3  |-  J  =  (  Iso  `  D
)
4 fthmon.f . . . . 5  |-  ( ph  ->  F ( C Faith  D
) G )
5 fthfunc 13781 . . . . . 6  |-  ( C Faith 
D )  C_  ( C  Func  D )
65ssbri 4065 . . . . 5  |-  ( F ( C Faith  D ) G  ->  F ( C  Func  D ) G )
74, 6syl 15 . . . 4  |-  ( ph  ->  F ( C  Func  D ) G )
87adantr 451 . . 3  |-  ( (
ph  /\  R  e.  ( X I Y ) )  ->  F ( C  Func  D ) G )
9 fthmon.x . . . 4  |-  ( ph  ->  X  e.  B )
109adantr 451 . . 3  |-  ( (
ph  /\  R  e.  ( X I Y ) )  ->  X  e.  B )
11 fthmon.y . . . 4  |-  ( ph  ->  Y  e.  B )
1211adantr 451 . . 3  |-  ( (
ph  /\  R  e.  ( X I Y ) )  ->  Y  e.  B )
13 simpr 447 . . 3  |-  ( (
ph  /\  R  e.  ( X I Y ) )  ->  R  e.  ( X I Y ) )
141, 2, 3, 8, 10, 12, 13funciso 13748 . 2  |-  ( (
ph  /\  R  e.  ( X I Y ) )  ->  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )
15 eqid 2283 . . . 4  |-  (  Hom  `  D )  =  (  Hom  `  D )
16 fthmon.h . . . 4  |-  H  =  (  Hom  `  C
)
17 ffthiso.f . . . . 5  |-  ( ph  ->  F ( C Full  D
) G )
1817adantr 451 . . . 4  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  F ( C Full  D ) G )
1911adantr 451 . . . 4  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  Y  e.  B )
209adantr 451 . . . 4  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  X  e.  B )
21 eqid 2283 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
22 df-br 4024 . . . . . . . . . 10  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
237, 22sylib 188 . . . . . . . . 9  |-  ( ph  -> 
<. F ,  G >.  e.  ( C  Func  D
) )
24 funcrcl 13737 . . . . . . . . 9  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
2523, 24syl 15 . . . . . . . 8  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
2625simprd 449 . . . . . . 7  |-  ( ph  ->  D  e.  Cat )
271, 21, 7funcf1 13740 . . . . . . . 8  |-  ( ph  ->  F : B --> ( Base `  D ) )
2827, 11ffvelrnd 5666 . . . . . . 7  |-  ( ph  ->  ( F `  Y
)  e.  ( Base `  D ) )
2927, 9ffvelrnd 5666 . . . . . . 7  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  D ) )
3021, 15, 3, 26, 28, 29isohom 13674 . . . . . 6  |-  ( ph  ->  ( ( F `  Y ) J ( F `  X ) )  C_  ( ( F `  Y )
(  Hom  `  D ) ( F `  X
) ) )
3130adantr 451 . . . . 5  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  ( ( F `  Y ) J ( F `  X ) )  C_  ( ( F `  Y ) (  Hom  `  D ) ( F `
 X ) ) )
32 eqid 2283 . . . . . . 7  |-  (Inv `  D )  =  (Inv
`  D )
3321, 32, 26, 29, 28, 3invf 13670 . . . . . 6  |-  ( ph  ->  ( ( F `  X ) (Inv `  D ) ( F `
 Y ) ) : ( ( F `
 X ) J ( F `  Y
) ) --> ( ( F `  Y ) J ( F `  X ) ) )
3433ffvelrnda 5665 . . . . 5  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  ( (
( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  e.  ( ( F `  Y
) J ( F `
 X ) ) )
3531, 34sseldd 3181 . . . 4  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  ( (
( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  e.  ( ( F `  Y
) (  Hom  `  D
) ( F `  X ) ) )
361, 15, 16, 18, 19, 20, 35fulli 13787 . . 3  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  E. f  e.  ( Y H X ) ( ( ( F `  X ) (Inv `  D )
( F `  Y
) ) `  (
( X G Y ) `  R ) )  =  ( ( Y G X ) `
 f ) )
37 eqid 2283 . . . . . 6  |-  (Inv `  C )  =  (Inv
`  C )
3825simpld 445 . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
3938ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  C  e.  Cat )
4020ad2antrr 706 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  X  e.  B )
4119ad2antrr 706 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  Y  e.  B )
4221, 32, 26, 29, 28, 3isoval 13667 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  X ) J ( F `  Y ) )  =  dom  (
( F `  X
) (Inv `  D
) ( F `  Y ) ) )
4342eleq2d 2350 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) )  <-> 
( ( X G Y ) `  R
)  e.  dom  (
( F `  X
) (Inv `  D
) ( F `  Y ) ) ) )
4443biimpa 470 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  ( ( X G Y ) `  R )  e.  dom  ( ( F `  X ) (Inv `  D ) ( F `
 Y ) ) )
4521, 32, 26, 29, 28invfun 13666 . . . . . . . . . . . 12  |-  ( ph  ->  Fun  ( ( F `
 X ) (Inv
`  D ) ( F `  Y ) ) )
4645adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  Fun  ( ( F `  X ) (Inv `  D )
( F `  Y
) ) )
47 funfvbrb 5638 . . . . . . . . . . 11  |-  ( Fun  ( ( F `  X ) (Inv `  D ) ( F `
 Y ) )  ->  ( ( ( X G Y ) `
 R )  e. 
dom  ( ( F `
 X ) (Inv
`  D ) ( F `  Y ) )  <->  ( ( X G Y ) `  R ) ( ( F `  X ) (Inv `  D )
( F `  Y
) ) ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) ) ) )
4846, 47syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  ( (
( X G Y ) `  R )  e.  dom  ( ( F `  X ) (Inv `  D )
( F `  Y
) )  <->  ( ( X G Y ) `  R ) ( ( F `  X ) (Inv `  D )
( F `  Y
) ) ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) ) ) )
4944, 48mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  ( ( X G Y ) `  R ) ( ( F `  X ) (Inv `  D )
( F `  Y
) ) ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) ) )
5049ad2antrr 706 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  ( ( X G Y ) `  R ) ( ( F `  X ) (Inv `  D )
( F `  Y
) ) ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) ) )
51 simpr 447 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  ( (
( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )
5250, 51breqtrd 4047 . . . . . . 7  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  ( ( X G Y ) `  R ) ( ( F `  X ) (Inv `  D )
( F `  Y
) ) ( ( Y G X ) `
 f ) )
534ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  F ( C Faith  D ) G )
54 fthmon.r . . . . . . . . 9  |-  ( ph  ->  R  e.  ( X H Y ) )
5554ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  R  e.  ( X H Y ) )
56 simplr 731 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  f  e.  ( Y H X ) )
571, 16, 53, 40, 41, 55, 56, 37, 32fthinv 13800 . . . . . . 7  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  ( R
( X (Inv `  C ) Y ) f  <->  ( ( X G Y ) `  R ) ( ( F `  X ) (Inv `  D )
( F `  Y
) ) ( ( Y G X ) `
 f ) ) )
5852, 57mpbird 223 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  R ( X (Inv `  C ) Y ) f )
591, 37, 39, 40, 41, 2, 58inviso1 13668 . . . . 5  |-  ( ( ( ( ph  /\  ( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) )  /\  f  e.  ( Y H X ) )  /\  ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f ) )  ->  R  e.  ( X I Y ) )
6059ex 423 . . . 4  |-  ( ( ( ph  /\  (
( X G Y ) `  R )  e.  ( ( F `
 X ) J ( F `  Y
) ) )  /\  f  e.  ( Y H X ) )  -> 
( ( ( ( F `  X ) (Inv `  D )
( F `  Y
) ) `  (
( X G Y ) `  R ) )  =  ( ( Y G X ) `
 f )  ->  R  e.  ( X I Y ) ) )
6160rexlimdva 2667 . . 3  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  ( E. f  e.  ( Y H X ) ( ( ( F `  X
) (Inv `  D
) ( F `  Y ) ) `  ( ( X G Y ) `  R
) )  =  ( ( Y G X ) `  f )  ->  R  e.  ( X I Y ) ) )
6236, 61mpd 14 . 2  |-  ( (
ph  /\  ( ( X G Y ) `  R )  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  R  e.  ( X I Y ) )
6314, 62impbida 805 1  |-  ( ph  ->  ( R  e.  ( X I Y )  <-> 
( ( X G Y ) `  R
)  e.  ( ( F `  X ) J ( F `  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544    C_ wss 3152   <.cop 3643   class class class wbr 4023   dom cdm 4689   Fun wfun 5249   ` cfv 5255  (class class class)co 5858   Basecbs 13148    Hom chom 13219   Catccat 13566  Invcinv 13648    Iso ciso 13649    Func cfunc 13728   Full cful 13776   Faith cfth 13777
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-map 6774  df-ixp 6818  df-cat 13570  df-cid 13571  df-sect 13650  df-inv 13651  df-iso 13652  df-func 13732  df-full 13778  df-fth 13779
  Copyright terms: Public domain W3C validator