MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgabs Unicode version

Theorem fgabs 17590
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgabs  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )

Proof of Theorem fgabs
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  e.  (
fBas `  Y )
)
2 fgcl 17589 . . . . . . . . 9  |-  ( F  e.  ( fBas `  Y
)  ->  ( Y filGen F )  e.  ( Fil `  Y ) )
3 filfbas 17559 . . . . . . . . 9  |-  ( ( Y filGen F )  e.  ( Fil `  Y
)  ->  ( Y filGen F )  e.  (
fBas `  Y )
)
41, 2, 33syl 18 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  Y ) )
5 fbsspw 17543 . . . . . . . . . 10  |-  ( ( Y filGen F )  e.  ( fBas `  Y
)  ->  ( Y filGen F )  C_  ~P Y )
64, 5syl 15 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  C_  ~P Y
)
7 simplr 731 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  Y  C_  X
)
8 sspwb 4239 . . . . . . . . . 10  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
97, 8sylib 188 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ~P Y  C_  ~P X )
106, 9sstrd 3202 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  C_  ~P X
)
11 simpr 447 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  X  e.  _V )
12 fbasweak 17576 . . . . . . . 8  |-  ( ( ( Y filGen F )  e.  ( fBas `  Y
)  /\  ( Y filGen F )  C_  ~P X  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
134, 10, 11, 12syl3anc 1182 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
14 elfg 17582 . . . . . . 7  |-  ( ( Y filGen F )  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  <->  ( x  C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )
) )
1513, 14syl 15 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  <->  ( x  C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )
) )
161adantr 451 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  F  e.  ( fBas `  Y
) )
17 elfg 17582 . . . . . . . . . 10  |-  ( F  e.  ( fBas `  Y
)  ->  ( y  e.  ( Y filGen F )  <-> 
( y  C_  Y  /\  E. z  e.  F  z  C_  y ) ) )
1816, 17syl 15 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
y  e.  ( Y
filGen F )  <->  ( y  C_  Y  /\  E. z  e.  F  z  C_  y ) ) )
19 fbsspw 17543 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
201, 19syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ~P Y )
2120, 9sstrd 3202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ~P X )
22 fbasweak 17576 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
231, 21, 11, 22syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  e.  (
fBas `  X )
)
24 fgcl 17589 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
2523, 24syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen F )  e.  ( Fil `  X ) )
2625ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
( X filGen F )  e.  ( Fil `  X
) )
27 ssfg 17583 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
2823, 27syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ( X filGen F ) )
2928adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  ->  F  C_  ( X filGen F ) )
3029sselda 3193 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  z  e.  F
)  ->  z  e.  ( X filGen F ) )
3130adantrr 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( z  e.  F  /\  z  C_  y ) )  -> 
z  e.  ( X
filGen F ) )
3231adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  e.  ( X
filGen F ) )
33 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  ->  x  C_  X )
34 simprlr 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  C_  y )
35 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
y  C_  x )
3634, 35sstrd 3202 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  C_  x )
37 filss 17564 . . . . . . . . . . . . . . 15  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  ( z  e.  ( X filGen F )  /\  x  C_  X  /\  z  C_  x ) )  ->  x  e.  ( X filGen F ) )
3826, 32, 33, 36, 37syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  ->  x  e.  ( X filGen F ) )
3938expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( z  e.  F  /\  z  C_  y ) )  -> 
( y  C_  x  ->  x  e.  ( X
filGen F ) ) )
4039expr 598 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  z  e.  F
)  ->  ( z  C_  y  ->  ( y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4140rexlimdva 2680 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  ->  ( E. z  e.  F  z  C_  y  ->  ( y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4241anassrs 629 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  /\  y  C_  Y )  ->  ( E. z  e.  F  z  C_  y  ->  (
y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4342expimpd 586 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
( y  C_  Y  /\  E. z  e.  F  z  C_  y )  -> 
( y  C_  x  ->  x  e.  ( X
filGen F ) ) ) )
4418, 43sylbid 206 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
y  e.  ( Y
filGen F )  ->  (
y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4544rexlimdv 2679 . . . . . . 7  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  ( E. y  e.  ( Y filGen F ) y 
C_  x  ->  x  e.  ( X filGen F ) ) )
4645expimpd 586 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( ( x 
C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )  ->  x  e.  ( X filGen F ) ) )
4715, 46sylbid 206 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  ->  x  e.  ( X filGen F ) ) )
4847ssrdv 3198 . . . 4  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen ( Y filGen F ) ) 
C_  ( X filGen F ) )
49 ssfg 17583 . . . . . 6  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ( Y filGen F ) )
5049ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ( Y filGen F ) )
51 fgss 17584 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  ( Y filGen F )  e.  ( fBas `  X
)  /\  F  C_  ( Y filGen F ) )  ->  ( X filGen F )  C_  ( X filGen ( Y filGen F ) ) )
5223, 13, 50, 51syl3anc 1182 . . . 4  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen F )  C_  ( X filGen ( Y filGen F ) ) )
5348, 52eqssd 3209 . . 3  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
5453ex 423 . 2  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) ) )
55 df-fg 17537 . . . . 5  |-  filGen  =  ( w  e.  _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
5655reldmmpt2 5971 . . . 4  |-  Rel  dom  filGen
5756ovprc1 5902 . . 3  |-  ( -.  X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  (/) )
5856ovprc1 5902 . . 3  |-  ( -.  X  e.  _V  ->  ( X filGen F )  =  (/) )
5957, 58eqtr4d 2331 . 2  |-  ( -.  X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
6054, 59pm2.61d1 151 1  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   {crab 2560   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   ` cfv 5271  (class class class)co 5874   fBascfbas 17534   filGencfg 17535   Filcfil 17556
This theorem is referenced by:  minveclem4a  18810
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-fbas 17536  df-fg 17537  df-fil 17557
  Copyright terms: Public domain W3C validator