MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgabs Unicode version

Theorem fgabs 17574
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgabs  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )

Proof of Theorem fgabs
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  e.  (
fBas `  Y )
)
2 fgcl 17573 . . . . . . . . 9  |-  ( F  e.  ( fBas `  Y
)  ->  ( Y filGen F )  e.  ( Fil `  Y ) )
3 filfbas 17543 . . . . . . . . 9  |-  ( ( Y filGen F )  e.  ( Fil `  Y
)  ->  ( Y filGen F )  e.  (
fBas `  Y )
)
41, 2, 33syl 18 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  Y ) )
5 fbsspw 17527 . . . . . . . . . 10  |-  ( ( Y filGen F )  e.  ( fBas `  Y
)  ->  ( Y filGen F )  C_  ~P Y )
64, 5syl 15 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  C_  ~P Y
)
7 simplr 731 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  Y  C_  X
)
8 sspwb 4223 . . . . . . . . . 10  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
97, 8sylib 188 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ~P Y  C_  ~P X )
106, 9sstrd 3189 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  C_  ~P X
)
11 simpr 447 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  X  e.  _V )
12 fbasweak 17560 . . . . . . . 8  |-  ( ( ( Y filGen F )  e.  ( fBas `  Y
)  /\  ( Y filGen F )  C_  ~P X  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
134, 10, 11, 12syl3anc 1182 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
14 elfg 17566 . . . . . . 7  |-  ( ( Y filGen F )  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  <->  ( x  C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )
) )
1513, 14syl 15 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  <->  ( x  C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )
) )
161adantr 451 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  F  e.  ( fBas `  Y
) )
17 elfg 17566 . . . . . . . . . 10  |-  ( F  e.  ( fBas `  Y
)  ->  ( y  e.  ( Y filGen F )  <-> 
( y  C_  Y  /\  E. z  e.  F  z  C_  y ) ) )
1816, 17syl 15 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
y  e.  ( Y
filGen F )  <->  ( y  C_  Y  /\  E. z  e.  F  z  C_  y ) ) )
19 fbsspw 17527 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
201, 19syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ~P Y )
2120, 9sstrd 3189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ~P X )
22 fbasweak 17560 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
231, 21, 11, 22syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  e.  (
fBas `  X )
)
24 fgcl 17573 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
2523, 24syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen F )  e.  ( Fil `  X ) )
2625ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
( X filGen F )  e.  ( Fil `  X
) )
27 ssfg 17567 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
2823, 27syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ( X filGen F ) )
2928adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  ->  F  C_  ( X filGen F ) )
3029sselda 3180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  z  e.  F
)  ->  z  e.  ( X filGen F ) )
3130adantrr 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( z  e.  F  /\  z  C_  y ) )  -> 
z  e.  ( X
filGen F ) )
3231adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  e.  ( X
filGen F ) )
33 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  ->  x  C_  X )
34 simprlr 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  C_  y )
35 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
y  C_  x )
3634, 35sstrd 3189 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  C_  x )
37 filss 17548 . . . . . . . . . . . . . . 15  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  ( z  e.  ( X filGen F )  /\  x  C_  X  /\  z  C_  x ) )  ->  x  e.  ( X filGen F ) )
3826, 32, 33, 36, 37syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  ->  x  e.  ( X filGen F ) )
3938expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( z  e.  F  /\  z  C_  y ) )  -> 
( y  C_  x  ->  x  e.  ( X
filGen F ) ) )
4039expr 598 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  z  e.  F
)  ->  ( z  C_  y  ->  ( y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4140rexlimdva 2667 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  ->  ( E. z  e.  F  z  C_  y  ->  ( y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4241anassrs 629 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  /\  y  C_  Y )  ->  ( E. z  e.  F  z  C_  y  ->  (
y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4342expimpd 586 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
( y  C_  Y  /\  E. z  e.  F  z  C_  y )  -> 
( y  C_  x  ->  x  e.  ( X
filGen F ) ) ) )
4418, 43sylbid 206 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
y  e.  ( Y
filGen F )  ->  (
y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4544rexlimdv 2666 . . . . . . 7  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  ( E. y  e.  ( Y filGen F ) y 
C_  x  ->  x  e.  ( X filGen F ) ) )
4645expimpd 586 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( ( x 
C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )  ->  x  e.  ( X filGen F ) ) )
4715, 46sylbid 206 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  ->  x  e.  ( X filGen F ) ) )
4847ssrdv 3185 . . . 4  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen ( Y filGen F ) ) 
C_  ( X filGen F ) )
49 ssfg 17567 . . . . . 6  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ( Y filGen F ) )
5049ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ( Y filGen F ) )
51 fgss 17568 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  ( Y filGen F )  e.  ( fBas `  X
)  /\  F  C_  ( Y filGen F ) )  ->  ( X filGen F )  C_  ( X filGen ( Y filGen F ) ) )
5223, 13, 50, 51syl3anc 1182 . . . 4  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen F )  C_  ( X filGen ( Y filGen F ) ) )
5348, 52eqssd 3196 . . 3  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
5453ex 423 . 2  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) ) )
55 df-fg 17521 . . . . 5  |-  filGen  =  ( w  e.  _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
5655reldmmpt2 5955 . . . 4  |-  Rel  dom  filGen
5756ovprc1 5886 . . 3  |-  ( -.  X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  (/) )
5856ovprc1 5886 . . 3  |-  ( -.  X  e.  _V  ->  ( X filGen F )  =  (/) )
5957, 58eqtr4d 2318 . 2  |-  ( -.  X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
6054, 59pm2.61d1 151 1  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   ` cfv 5255  (class class class)co 5858   fBascfbas 17518   filGencfg 17519   Filcfil 17540
This theorem is referenced by:  minveclem4a  18794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-fbas 17520  df-fg 17521  df-fil 17541
  Copyright terms: Public domain W3C validator