MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgtr Unicode version

Theorem fgtr 17836
Description: If  A is a member of the filter, then truncating  F to  A and regenerating the behavior outside  A using 
filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgtr  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  =  F )

Proof of Theorem fgtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 17794 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2 fbncp 17785 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  F )  ->  -.  ( X  \  A )  e.  F )
31, 2sylan 458 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  -.  ( X  \  A )  e.  F )
4 filelss 17798 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  A  C_  X )
5 trfil3 17834 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  C_  X )  ->  (
( Ft  A )  e.  ( Fil `  A )  <->  -.  ( X  \  A
)  e.  F ) )
64, 5syldan 457 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
( Ft  A )  e.  ( Fil `  A )  <->  -.  ( X  \  A
)  e.  F ) )
73, 6mpbird 224 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  ( Fil `  A ) )
8 filfbas 17794 . . . . . 6  |-  ( ( Ft  A )  e.  ( Fil `  A )  ->  ( Ft  A )  e.  ( fBas `  A
) )
97, 8syl 16 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  (
fBas `  A )
)
10 restsspw 13579 . . . . . 6  |-  ( Ft  A )  C_  ~P A
11 sspwb 4347 . . . . . . 7  |-  ( A 
C_  X  <->  ~P A  C_ 
~P X )
124, 11sylib 189 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ~P A  C_  ~P X )
1310, 12syl5ss 3295 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  ~P X )
14 filtop 17801 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
1514adantr 452 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  X  e.  F )
16 fbasweak 17811 . . . . 5  |-  ( ( ( Ft  A )  e.  (
fBas `  A )  /\  ( Ft  A )  C_  ~P X  /\  X  e.  F
)  ->  ( Ft  A
)  e.  ( fBas `  X ) )
179, 13, 15, 16syl3anc 1184 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  (
fBas `  X )
)
181adantr 452 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  F  e.  ( fBas `  X
) )
19 trfilss 17835 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  F
)
20 fgss 17819 . . . 4  |-  ( ( ( Ft  A )  e.  (
fBas `  X )  /\  F  e.  ( fBas `  X )  /\  ( Ft  A )  C_  F
)  ->  ( X filGen ( Ft  A ) )  C_  ( X filGen F ) )
2117, 18, 19, 20syl3anc 1184 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  C_  ( X filGen F ) )
22 fgfil 17821 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( X filGen F )  =  F )
2322adantr 452 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen F )  =  F )
2421, 23sseqtrd 3320 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  C_  F )
25 filelss 17798 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  x  e.  F )  ->  x  C_  X )
2625ex 424 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  x  C_  X ) )
2726adantr 452 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  x  C_  X ) )
28 elrestr 13576 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
29283expa 1153 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  F
)  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
30 inss1 3497 . . . . . . 7  |-  ( x  i^i  A )  C_  x
31 sseq1 3305 . . . . . . . 8  |-  ( y  =  ( x  i^i 
A )  ->  (
y  C_  x  <->  ( x  i^i  A )  C_  x
) )
3231rspcev 2988 . . . . . . 7  |-  ( ( ( x  i^i  A
)  e.  ( Ft  A )  /\  ( x  i^i  A )  C_  x )  ->  E. y  e.  ( Ft  A ) y  C_  x )
3329, 30, 32sylancl 644 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  F
)  /\  x  e.  F )  ->  E. y  e.  ( Ft  A ) y  C_  x )
3433ex 424 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  E. y  e.  ( Ft  A ) y  C_  x ) )
3527, 34jcad 520 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  -> 
( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
36 elfg 17817 . . . . 5  |-  ( ( Ft  A )  e.  (
fBas `  X )  ->  ( x  e.  ( X filGen ( Ft  A ) )  <->  ( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
3717, 36syl 16 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  ( X
filGen ( Ft  A ) )  <->  ( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
3835, 37sylibrd 226 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  x  e.  ( X filGen ( Ft  A ) ) ) )
3938ssrdv 3290 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  F  C_  ( X filGen ( Ft  A ) ) )
4024, 39eqssd 3301 1  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  =  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2643    \ cdif 3253    i^i cin 3255    C_ wss 3256   ~Pcpw 3735   ` cfv 5387  (class class class)co 6013   ↾t crest 13568   fBascfbas 16608   filGencfg 16609   Filcfil 17791
This theorem is referenced by:  cfilres  19113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-rest 13570  df-fbas 16616  df-fg 16617  df-fil 17792
  Copyright terms: Public domain W3C validator