MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficard Unicode version

Theorem ficard 8187
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ficard  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  ( card `  A )  e.  om ) )

Proof of Theorem ficard
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfi 6885 . . 3  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 carden 8173 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  om )  ->  ( ( card `  A
)  =  ( card `  x )  <->  A  ~~  x ) )
3 cardnn 7596 . . . . . . . 8  |-  ( x  e.  om  ->  ( card `  x )  =  x )
4 eqtr 2300 . . . . . . . . 9  |-  ( ( ( card `  A
)  =  ( card `  x )  /\  ( card `  x )  =  x )  ->  ( card `  A )  =  x )
54expcom 424 . . . . . . . 8  |-  ( (
card `  x )  =  x  ->  ( (
card `  A )  =  ( card `  x
)  ->  ( card `  A )  =  x ) )
63, 5syl 15 . . . . . . 7  |-  ( x  e.  om  ->  (
( card `  A )  =  ( card `  x
)  ->  ( card `  A )  =  x ) )
7 eleq1a 2352 . . . . . . 7  |-  ( x  e.  om  ->  (
( card `  A )  =  x  ->  ( card `  A )  e.  om ) )
86, 7syld 40 . . . . . 6  |-  ( x  e.  om  ->  (
( card `  A )  =  ( card `  x
)  ->  ( card `  A )  e.  om ) )
98adantl 452 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  om )  ->  ( ( card `  A
)  =  ( card `  x )  ->  ( card `  A )  e. 
om ) )
102, 9sylbird 226 . . . 4  |-  ( ( A  e.  V  /\  x  e.  om )  ->  ( A  ~~  x  ->  ( card `  A
)  e.  om )
)
1110rexlimdva 2667 . . 3  |-  ( A  e.  V  ->  ( E. x  e.  om  A  ~~  x  ->  ( card `  A )  e. 
om ) )
121, 11syl5bi 208 . 2  |-  ( A  e.  V  ->  ( A  e.  Fin  ->  ( card `  A )  e. 
om ) )
13 cardnn 7596 . . . . . . . 8  |-  ( (
card `  A )  e.  om  ->  ( card `  ( card `  A
) )  =  (
card `  A )
)
1413eqcomd 2288 . . . . . . 7  |-  ( (
card `  A )  e.  om  ->  ( card `  A )  =  (
card `  ( card `  A ) ) )
1514adantl 452 . . . . . 6  |-  ( ( A  e.  V  /\  ( card `  A )  e.  om )  ->  ( card `  A )  =  ( card `  ( card `  A ) ) )
16 carden 8173 . . . . . 6  |-  ( ( A  e.  V  /\  ( card `  A )  e.  om )  ->  (
( card `  A )  =  ( card `  ( card `  A ) )  <-> 
A  ~~  ( card `  A ) ) )
1715, 16mpbid 201 . . . . 5  |-  ( ( A  e.  V  /\  ( card `  A )  e.  om )  ->  A  ~~  ( card `  A
) )
1817ex 423 . . . 4  |-  ( A  e.  V  ->  (
( card `  A )  e.  om  ->  A  ~~  ( card `  A )
) )
1918ancld 536 . . 3  |-  ( A  e.  V  ->  (
( card `  A )  e.  om  ->  ( ( card `  A )  e. 
om  /\  A  ~~  ( card `  A )
) ) )
20 breq2 4027 . . . . 5  |-  ( x  =  ( card `  A
)  ->  ( A  ~~  x  <->  A  ~~  ( card `  A ) ) )
2120rspcev 2884 . . . 4  |-  ( ( ( card `  A
)  e.  om  /\  A  ~~  ( card `  A
) )  ->  E. x  e.  om  A  ~~  x
)
2221, 1sylibr 203 . . 3  |-  ( ( ( card `  A
)  e.  om  /\  A  ~~  ( card `  A
) )  ->  A  e.  Fin )
2319, 22syl6 29 . 2  |-  ( A  e.  V  ->  (
( card `  A )  e.  om  ->  A  e.  Fin ) )
2412, 23impbid 183 1  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  ( card `  A )  e.  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023   omcom 4656   ` cfv 5255    ~~ cen 6860   Fincfn 6863   cardccrd 7568
This theorem is referenced by:  cfpwsdom  8206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-ac2 8089
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-ac 7743
  Copyright terms: Public domain W3C validator