MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficard Unicode version

Theorem ficard 8274
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ficard  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  ( card `  A )  e.  om ) )

Proof of Theorem ficard
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfi 6970 . . 3  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 carden 8260 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  om )  ->  ( ( card `  A
)  =  ( card `  x )  <->  A  ~~  x ) )
3 cardnn 7683 . . . . . . . 8  |-  ( x  e.  om  ->  ( card `  x )  =  x )
4 eqtr 2375 . . . . . . . . 9  |-  ( ( ( card `  A
)  =  ( card `  x )  /\  ( card `  x )  =  x )  ->  ( card `  A )  =  x )
54expcom 424 . . . . . . . 8  |-  ( (
card `  x )  =  x  ->  ( (
card `  A )  =  ( card `  x
)  ->  ( card `  A )  =  x ) )
63, 5syl 15 . . . . . . 7  |-  ( x  e.  om  ->  (
( card `  A )  =  ( card `  x
)  ->  ( card `  A )  =  x ) )
7 eleq1a 2427 . . . . . . 7  |-  ( x  e.  om  ->  (
( card `  A )  =  x  ->  ( card `  A )  e.  om ) )
86, 7syld 40 . . . . . 6  |-  ( x  e.  om  ->  (
( card `  A )  =  ( card `  x
)  ->  ( card `  A )  e.  om ) )
98adantl 452 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  om )  ->  ( ( card `  A
)  =  ( card `  x )  ->  ( card `  A )  e. 
om ) )
102, 9sylbird 226 . . . 4  |-  ( ( A  e.  V  /\  x  e.  om )  ->  ( A  ~~  x  ->  ( card `  A
)  e.  om )
)
1110rexlimdva 2743 . . 3  |-  ( A  e.  V  ->  ( E. x  e.  om  A  ~~  x  ->  ( card `  A )  e. 
om ) )
121, 11syl5bi 208 . 2  |-  ( A  e.  V  ->  ( A  e.  Fin  ->  ( card `  A )  e. 
om ) )
13 cardnn 7683 . . . . . . . 8  |-  ( (
card `  A )  e.  om  ->  ( card `  ( card `  A
) )  =  (
card `  A )
)
1413eqcomd 2363 . . . . . . 7  |-  ( (
card `  A )  e.  om  ->  ( card `  A )  =  (
card `  ( card `  A ) ) )
1514adantl 452 . . . . . 6  |-  ( ( A  e.  V  /\  ( card `  A )  e.  om )  ->  ( card `  A )  =  ( card `  ( card `  A ) ) )
16 carden 8260 . . . . . 6  |-  ( ( A  e.  V  /\  ( card `  A )  e.  om )  ->  (
( card `  A )  =  ( card `  ( card `  A ) )  <-> 
A  ~~  ( card `  A ) ) )
1715, 16mpbid 201 . . . . 5  |-  ( ( A  e.  V  /\  ( card `  A )  e.  om )  ->  A  ~~  ( card `  A
) )
1817ex 423 . . . 4  |-  ( A  e.  V  ->  (
( card `  A )  e.  om  ->  A  ~~  ( card `  A )
) )
1918ancld 536 . . 3  |-  ( A  e.  V  ->  (
( card `  A )  e.  om  ->  ( ( card `  A )  e. 
om  /\  A  ~~  ( card `  A )
) ) )
20 breq2 4106 . . . . 5  |-  ( x  =  ( card `  A
)  ->  ( A  ~~  x  <->  A  ~~  ( card `  A ) ) )
2120rspcev 2960 . . . 4  |-  ( ( ( card `  A
)  e.  om  /\  A  ~~  ( card `  A
) )  ->  E. x  e.  om  A  ~~  x
)
2221, 1sylibr 203 . . 3  |-  ( ( ( card `  A
)  e.  om  /\  A  ~~  ( card `  A
) )  ->  A  e.  Fin )
2319, 22syl6 29 . 2  |-  ( A  e.  V  ->  (
( card `  A )  e.  om  ->  A  e.  Fin ) )
2412, 23impbid 183 1  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  ( card `  A )  e.  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   E.wrex 2620   class class class wbr 4102   omcom 4735   ` cfv 5334    ~~ cen 6945   Fincfn 6948   cardccrd 7655
This theorem is referenced by:  cfpwsdom  8293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-ac2 8176
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-riota 6388  df-recs 6472  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-card 7659  df-ac 7830
  Copyright terms: Public domain W3C validator