MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardid Unicode version

Theorem ficardid 7640
Description: A finite set is equinumerous to its cardinal number. (Contributed by Mario Carneiro, 21-Sep-2013.)
Assertion
Ref Expression
ficardid  |-  ( A  e.  Fin  ->  ( card `  A )  ~~  A )

Proof of Theorem ficardid
StepHypRef Expression
1 finnum 7626 . 2  |-  ( A  e.  Fin  ->  A  e.  dom  card )
2 cardid2 7631 . 2  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )
31, 2syl 15 1  |-  ( A  e.  Fin  ->  ( card `  A )  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1701   class class class wbr 4060   dom cdm 4726   ` cfv 5292    ~~ cen 6903   Fincfn 6906   cardccrd 7613
This theorem is referenced by:  isinffi  7670  finnisoeu  7785  ackbij1lem5  7895  ackbij1lem9  7899  ackbij1b  7910  ackbij2lem2  7911  fin1a2lem11  8081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-er 6702  df-en 6907  df-fin 6910  df-card 7617
  Copyright terms: Public domain W3C validator