MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrng Structured version   Unicode version

Theorem fidomndrng 16368
Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
fidomndrng.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
fidomndrng  |-  ( B  e.  Fin  ->  ( R  e. Domn  <->  R  e.  DivRing ) )

Proof of Theorem fidomndrng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnrng 16357 . . . . 5  |-  ( R  e. Domn  ->  R  e.  Ring )
21adantl 454 . . . 4  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  R  e.  Ring )
3 domnnzr 16356 . . . . . . . . . . 11  |-  ( R  e. Domn  ->  R  e. NzRing )
43adantl 454 . . . . . . . . . 10  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  R  e. NzRing )
5 eqid 2437 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
6 eqid 2437 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
75, 6nzrnz 16332 . . . . . . . . . 10  |-  ( R  e. NzRing  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
84, 7syl 16 . . . . . . . . 9  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
98neneqd 2618 . . . . . . . 8  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  -.  ( 1r `  R
)  =  ( 0g
`  R ) )
10 eqid 2437 . . . . . . . . . 10  |-  (Unit `  R )  =  (Unit `  R )
1110, 6, 50unit 15786 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( ( 0g `  R )  e.  (Unit `  R
)  <->  ( 1r `  R )  =  ( 0g `  R ) ) )
122, 11syl 16 . . . . . . . 8  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  ( ( 0g `  R
)  e.  (Unit `  R )  <->  ( 1r `  R )  =  ( 0g `  R ) ) )
139, 12mtbird 294 . . . . . . 7  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  -.  ( 0g `  R
)  e.  (Unit `  R ) )
14 disjsn 3869 . . . . . . 7  |-  ( ( (Unit `  R )  i^i  { ( 0g `  R ) } )  =  (/)  <->  -.  ( 0g `  R )  e.  (Unit `  R ) )
1513, 14sylibr 205 . . . . . 6  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  ( (Unit `  R )  i^i  { ( 0g `  R ) } )  =  (/) )
16 fidomndrng.b . . . . . . . 8  |-  B  =  ( Base `  R
)
1716, 10unitss 15766 . . . . . . 7  |-  (Unit `  R )  C_  B
18 reldisj 3672 . . . . . . 7  |-  ( (Unit `  R )  C_  B  ->  ( ( (Unit `  R )  i^i  {
( 0g `  R
) } )  =  (/) 
<->  (Unit `  R )  C_  ( B  \  {
( 0g `  R
) } ) ) )
1917, 18ax-mp 8 . . . . . 6  |-  ( ( (Unit `  R )  i^i  { ( 0g `  R ) } )  =  (/)  <->  (Unit `  R )  C_  ( B  \  {
( 0g `  R
) } ) )
2015, 19sylib 190 . . . . 5  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  (Unit `  R )  C_  ( B  \  { ( 0g
`  R ) } ) )
21 eqid 2437 . . . . . . . . 9  |-  ( ||r `  R
)  =  ( ||r `  R
)
22 eqid 2437 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
23 simplr 733 . . . . . . . . 9  |-  ( ( ( B  e.  Fin  /\  R  e. Domn )  /\  x  e.  ( B  \  { ( 0g `  R ) } ) )  ->  R  e. Domn )
24 simpll 732 . . . . . . . . 9  |-  ( ( ( B  e.  Fin  /\  R  e. Domn )  /\  x  e.  ( B  \  { ( 0g `  R ) } ) )  ->  B  e.  Fin )
25 simpr 449 . . . . . . . . 9  |-  ( ( ( B  e.  Fin  /\  R  e. Domn )  /\  x  e.  ( B  \  { ( 0g `  R ) } ) )  ->  x  e.  ( B  \  { ( 0g `  R ) } ) )
26 eqid 2437 . . . . . . . . 9  |-  ( y  e.  B  |->  ( y ( .r `  R
) x ) )  =  ( y  e.  B  |->  ( y ( .r `  R ) x ) )
2716, 6, 5, 21, 22, 23, 24, 25, 26fidomndrnglem 16367 . . . . . . . 8  |-  ( ( ( B  e.  Fin  /\  R  e. Domn )  /\  x  e.  ( B  \  { ( 0g `  R ) } ) )  ->  x ( ||r `  R ) ( 1r
`  R ) )
28 eqid 2437 . . . . . . . . . 10  |-  (oppr `  R
)  =  (oppr `  R
)
2928, 16opprbas 15735 . . . . . . . . 9  |-  B  =  ( Base `  (oppr `  R
) )
3028, 6oppr0 15739 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  (oppr `  R
) )
3128, 5oppr1 15740 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) )
32 eqid 2437 . . . . . . . . 9  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
33 eqid 2437 . . . . . . . . 9  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
3428opprdomn 16362 . . . . . . . . . 10  |-  ( R  e. Domn  ->  (oppr
`  R )  e. Domn
)
3523, 34syl 16 . . . . . . . . 9  |-  ( ( ( B  e.  Fin  /\  R  e. Domn )  /\  x  e.  ( B  \  { ( 0g `  R ) } ) )  ->  (oppr
`  R )  e. Domn
)
36 eqid 2437 . . . . . . . . 9  |-  ( y  e.  B  |->  ( y ( .r `  (oppr `  R
) ) x ) )  =  ( y  e.  B  |->  ( y ( .r `  (oppr `  R
) ) x ) )
3729, 30, 31, 32, 33, 35, 24, 25, 36fidomndrnglem 16367 . . . . . . . 8  |-  ( ( ( B  e.  Fin  /\  R  e. Domn )  /\  x  e.  ( B  \  { ( 0g `  R ) } ) )  ->  x ( ||r `  (oppr
`  R ) ) ( 1r `  R
) )
3810, 5, 21, 28, 32isunit 15763 . . . . . . . 8  |-  ( x  e.  (Unit `  R
)  <->  ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) )
3927, 37, 38sylanbrc 647 . . . . . . 7  |-  ( ( ( B  e.  Fin  /\  R  e. Domn )  /\  x  e.  ( B  \  { ( 0g `  R ) } ) )  ->  x  e.  (Unit `  R ) )
4039ex 425 . . . . . 6  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  ( x  e.  ( B 
\  { ( 0g
`  R ) } )  ->  x  e.  (Unit `  R ) ) )
4140ssrdv 3355 . . . . 5  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  ( B  \  { ( 0g `  R ) } )  C_  (Unit `  R ) )
4220, 41eqssd 3366 . . . 4  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  (Unit `  R )  =  ( B  \  { ( 0g `  R ) } ) )
4316, 10, 6isdrng 15840 . . . 4  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  { ( 0g `  R ) } ) ) )
442, 42, 43sylanbrc 647 . . 3  |-  ( ( B  e.  Fin  /\  R  e. Domn )  ->  R  e.  DivRing )
4544ex 425 . 2  |-  ( B  e.  Fin  ->  ( R  e. Domn  ->  R  e.  DivRing ) )
46 drngdomn 16364 . 2  |-  ( R  e.  DivRing  ->  R  e. Domn )
4745, 46impbid1 196 1  |-  ( B  e.  Fin  ->  ( R  e. Domn  <->  R  e.  DivRing ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2600    \ cdif 3318    i^i cin 3320    C_ wss 3321   (/)c0 3629   {csn 3815   class class class wbr 4213    e. cmpt 4267   ` cfv 5455  (class class class)co 6082   Fincfn 7110   Basecbs 13470   .rcmulr 13531   0gc0g 13724   Ringcrg 15661   1rcur 15663  opprcoppr 15728   ||rcdsr 15744  Unitcui 15745   DivRingcdr 15836  NzRingcnzr 16329  Domncdomn 16341
This theorem is referenced by:  fiidomfld  16369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-tpos 6480  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-2o 6726  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-3 10060  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-0g 13728  df-mnd 14691  df-grp 14813  df-minusg 14814  df-sbg 14815  df-ghm 15005  df-mgp 15650  df-rng 15664  df-ur 15666  df-oppr 15729  df-dvdsr 15747  df-unit 15748  df-invr 15778  df-drng 15838  df-nzr 16330  df-rlreg 16344  df-domn 16345
  Copyright terms: Public domain W3C validator