MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrnglem Unicode version

Theorem fidomndrnglem 16286
Description: Lemma for fidomndrng 16287. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
fidomndrng.b  |-  B  =  ( Base `  R
)
fidomndrng.z  |-  .0.  =  ( 0g `  R )
fidomndrng.o  |-  .1.  =  ( 1r `  R )
fidomndrng.d  |-  .||  =  (
||r `  R )
fidomndrng.t  |-  .x.  =  ( .r `  R )
fidomndrng.r  |-  ( ph  ->  R  e. Domn )
fidomndrng.x  |-  ( ph  ->  B  e.  Fin )
fidomndrng.a  |-  ( ph  ->  A  e.  ( B 
\  {  .0.  }
) )
fidomndrng.f  |-  F  =  ( x  e.  B  |->  ( x  .x.  A
) )
Assertion
Ref Expression
fidomndrnglem  |-  ( ph  ->  A  .||  .1.  )
Distinct variable groups:    x, A    x, B    x, R    x,  .x.
Allowed substitution hints:    ph( x)    .|| ( x)    .1. ( x)    F( x)    .0. ( x)

Proof of Theorem fidomndrnglem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fidomndrng.a . . . 4  |-  ( ph  ->  A  e.  ( B 
\  {  .0.  }
) )
21eldifad 3268 . . 3  |-  ( ph  ->  A  e.  B )
3 eldifsni 3864 . . . . . . . . . . . 12  |-  ( A  e.  ( B  \  {  .0.  } )  ->  A  =/=  .0.  )
41, 3syl 16 . . . . . . . . . . 11  |-  ( ph  ->  A  =/=  .0.  )
54ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  A  =/=  .0.  )
6 oveq1 6020 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
7 fidomndrng.f . . . . . . . . . . . . . . . . 17  |-  F  =  ( x  e.  B  |->  ( x  .x.  A
) )
8 ovex 6038 . . . . . . . . . . . . . . . . 17  |-  ( y 
.x.  A )  e. 
_V
96, 7, 8fvmpt 5738 . . . . . . . . . . . . . . . 16  |-  ( y  e.  B  ->  ( F `  y )  =  ( y  .x.  A ) )
109adantl 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  ( F `  y )  =  ( y  .x.  A ) )
1110eqeq1d 2388 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
( F `  y
)  =  .0.  <->  ( y  .x.  A )  =  .0.  ) )
12 fidomndrng.r . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  e. Domn )
1312adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  R  e. Domn )
14 simpr 448 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
152adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  A  e.  B )
16 fidomndrng.b . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  R
)
17 fidomndrng.t . . . . . . . . . . . . . . . 16  |-  .x.  =  ( .r `  R )
18 fidomndrng.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  R )
1916, 17, 18domneq0 16277 . . . . . . . . . . . . . . 15  |-  ( ( R  e. Domn  /\  y  e.  B  /\  A  e.  B )  ->  (
( y  .x.  A
)  =  .0.  <->  ( y  =  .0.  \/  A  =  .0.  ) ) )
2013, 14, 15, 19syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
( y  .x.  A
)  =  .0.  <->  ( y  =  .0.  \/  A  =  .0.  ) ) )
2111, 20bitrd 245 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
( F `  y
)  =  .0.  <->  ( y  =  .0.  \/  A  =  .0.  ) ) )
2221biimpa 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  (
y  =  .0.  \/  A  =  .0.  )
)
2322ord 367 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  ( -.  y  =  .0.  ->  A  =  .0.  )
)
2423necon1ad 2610 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  ( A  =/=  .0.  ->  y  =  .0.  ) )
255, 24mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  y  =  .0.  )
2625ex 424 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  (
( F `  y
)  =  .0.  ->  y  =  .0.  ) )
2726ralrimiva 2725 . . . . . . 7  |-  ( ph  ->  A. y  e.  B  ( ( F `  y )  =  .0. 
->  y  =  .0.  ) )
28 domnrng 16276 . . . . . . . . . . 11  |-  ( R  e. Domn  ->  R  e.  Ring )
2912, 28syl 16 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
3016, 17rngrghm 15632 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  A  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  A ) )  e.  ( R 
GrpHom  R ) )
3129, 2, 30syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  B  |->  ( x  .x.  A
) )  e.  ( R  GrpHom  R ) )
327, 31syl5eqel 2464 . . . . . . . 8  |-  ( ph  ->  F  e.  ( R 
GrpHom  R ) )
3316, 16, 18, 18ghmf1 14954 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  R )  ->  ( F : B -1-1-> B  <->  A. y  e.  B  ( ( F `  y )  =  .0. 
->  y  =  .0.  ) ) )
3432, 33syl 16 . . . . . . 7  |-  ( ph  ->  ( F : B -1-1-> B  <->  A. y  e.  B  ( ( F `  y )  =  .0. 
->  y  =  .0.  ) ) )
3527, 34mpbird 224 . . . . . 6  |-  ( ph  ->  F : B -1-1-> B
)
36 fidomndrng.x . . . . . . . 8  |-  ( ph  ->  B  e.  Fin )
37 enrefg 7068 . . . . . . . 8  |-  ( B  e.  Fin  ->  B  ~~  B )
3836, 37syl 16 . . . . . . 7  |-  ( ph  ->  B  ~~  B )
39 f1finf1o 7264 . . . . . . 7  |-  ( ( B  ~~  B  /\  B  e.  Fin )  ->  ( F : B -1-1-> B  <-> 
F : B -1-1-onto-> B ) )
4038, 36, 39syl2anc 643 . . . . . 6  |-  ( ph  ->  ( F : B -1-1-> B  <-> 
F : B -1-1-onto-> B ) )
4135, 40mpbid 202 . . . . 5  |-  ( ph  ->  F : B -1-1-onto-> B )
42 f1ocnv 5620 . . . . 5  |-  ( F : B -1-1-onto-> B  ->  `' F : B -1-1-onto-> B )
43 f1of 5607 . . . . 5  |-  ( `' F : B -1-1-onto-> B  ->  `' F : B --> B )
4441, 42, 433syl 19 . . . 4  |-  ( ph  ->  `' F : B --> B )
45 fidomndrng.o . . . . . 6  |-  .1.  =  ( 1r `  R )
4616, 45rngidcl 15604 . . . . 5  |-  ( R  e.  Ring  ->  .1.  e.  B )
4729, 46syl 16 . . . 4  |-  ( ph  ->  .1.  e.  B )
4844, 47ffvelrnd 5803 . . 3  |-  ( ph  ->  ( `' F `  .1.  )  e.  B
)
49 fidomndrng.d . . . 4  |-  .||  =  (
||r `  R )
5016, 49, 17dvdsrmul 15673 . . 3  |-  ( ( A  e.  B  /\  ( `' F `  .1.  )  e.  B )  ->  A  .||  ( ( `' F `  .1.  )  .x.  A
) )
512, 48, 50syl2anc 643 . 2  |-  ( ph  ->  A  .||  ( ( `' F `  .1.  )  .x.  A ) )
52 oveq1 6020 . . . . 5  |-  ( y  =  ( `' F `  .1.  )  ->  (
y  .x.  A )  =  ( ( `' F `  .1.  )  .x.  A ) )
536cbvmptv 4234 . . . . . 6  |-  ( x  e.  B  |->  ( x 
.x.  A ) )  =  ( y  e.  B  |->  ( y  .x.  A ) )
547, 53eqtri 2400 . . . . 5  |-  F  =  ( y  e.  B  |->  ( y  .x.  A
) )
55 ovex 6038 . . . . 5  |-  ( ( `' F `  .1.  )  .x.  A )  e.  _V
5652, 54, 55fvmpt 5738 . . . 4  |-  ( ( `' F `  .1.  )  e.  B  ->  ( F `
 ( `' F `  .1.  ) )  =  ( ( `' F `  .1.  )  .x.  A
) )
5748, 56syl 16 . . 3  |-  ( ph  ->  ( F `  ( `' F `  .1.  )
)  =  ( ( `' F `  .1.  )  .x.  A ) )
58 f1ocnvfv2 5947 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  .1.  e.  B )  -> 
( F `  ( `' F `  .1.  )
)  =  .1.  )
5941, 47, 58syl2anc 643 . . 3  |-  ( ph  ->  ( F `  ( `' F `  .1.  )
)  =  .1.  )
6057, 59eqtr3d 2414 . 2  |-  ( ph  ->  ( ( `' F `  .1.  )  .x.  A
)  =  .1.  )
6151, 60breqtrd 4170 1  |-  ( ph  ->  A  .||  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642    \ cdif 3253   {csn 3750   class class class wbr 4146    e. cmpt 4200   `'ccnv 4810   -->wf 5383   -1-1->wf1 5384   -1-1-onto->wf1o 5386   ` cfv 5387  (class class class)co 6013    ~~ cen 7035   Fincfn 7038   Basecbs 13389   .rcmulr 13450   0gc0g 13643    GrpHom cghm 14923   Ringcrg 15580   1rcur 15582   ||rcdsr 15663  Domncdomn 16260
This theorem is referenced by:  fidomndrng  16287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-plusg 13462  df-0g 13647  df-mnd 14610  df-grp 14732  df-minusg 14733  df-sbg 14734  df-ghm 14924  df-mgp 15569  df-rng 15583  df-ur 15585  df-dvdsr 15666  df-nzr 16249  df-domn 16264
  Copyright terms: Public domain W3C validator