MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinopn Structured version   Unicode version

Theorem fiinopn 16974
Description: The intersection of a non-empty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
Assertion
Ref Expression
fiinopn  |-  ( J  e.  Top  ->  (
( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )

Proof of Theorem fiinopn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elpwg 3806 . . . . . . 7  |-  ( A  e.  Fin  ->  ( A  e.  ~P J  <->  A 
C_  J ) )
2 sseq1 3369 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
x  C_  J  <->  A  C_  J
) )
3 neeq1 2609 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
x  =/=  (/)  <->  A  =/=  (/) ) )
4 eleq1 2496 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
x  e.  Fin  <->  A  e.  Fin ) )
52, 3, 43anbi123d 1254 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  <->  ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin ) ) )
6 inteq 4053 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  |^| x  =  |^| A )
76eleq1d 2502 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  ( |^| x  e.  J  <->  |^| A  e.  J ) )
87imbi2d 308 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( J  e.  Top  ->  |^| x  e.  J
)  <->  ( J  e. 
Top  ->  |^| A  e.  J
) ) )
95, 8imbi12d 312 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  ( J  e.  Top  ->  |^| x  e.  J ) )  <->  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) )
10 istop2g 16969 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) ) )
1110ibi 233 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
12 sp 1763 . . . . . . . . . . . . . . 15  |-  ( A. x ( ( x 
C_  J  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  J )  ->  (
( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) )
1312adantl 453 . . . . . . . . . . . . . 14  |-  ( ( A. x ( x 
C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
C_  J  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  J ) )  -> 
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) )
1411, 13syl 16 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  (
( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) )
1514com12 29 . . . . . . . . . . . 12  |-  ( ( x  C_  J  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  ( J  e.  Top  ->  |^| x  e.  J ) )
169, 15vtoclg 3011 . . . . . . . . . . 11  |-  ( A  e.  ~P J  -> 
( ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) )
1716com12 29 . . . . . . . . . 10  |-  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( A  e.  ~P J  ->  ( J  e.  Top  ->  |^| A  e.  J
) ) )
18173exp 1152 . . . . . . . . 9  |-  ( A 
C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  Fin  ->  ( A  e.  ~P J  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
1918com3r 75 . . . . . . . 8  |-  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  ~P J  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
2019com4r 82 . . . . . . 7  |-  ( A  e.  ~P J  -> 
( A  e.  Fin  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
211, 20syl6bir 221 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) ) )
2221pm2.43a 47 . . . . 5  |-  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
2322com4l 80 . . . 4  |-  ( A 
C_  J  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  Fin  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
2423pm2.43i 45 . . 3  |-  ( A 
C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  Fin  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) )
25243imp 1147 . 2  |-  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( J  e.  Top  ->  |^| A  e.  J ) )
2625com12 29 1  |-  ( J  e.  Top  ->  (
( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725    =/= wne 2599    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   U.cuni 4015   |^|cint 4050   Fincfn 7109   Topctop 16958
This theorem is referenced by:  iinopn  16975  hauscmplem  17469  1stcfb  17508  txtube  17672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-fin 7113  df-top 16963
  Copyright terms: Public domain W3C validator