Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filbcmb Unicode version

Theorem filbcmb 26134
Description: Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
filbcmb  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    ph, y
Allowed substitution hints:    ph( x, z)

Proof of Theorem filbcmb
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9015 . . . . 5  |-  RR  e.  _V
21ssex 4289 . . . 4  |-  ( B 
C_  RR  ->  B  e. 
_V )
3 indexfi 7350 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  _V  /\  A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )
433expia 1155 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  _V )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) ) ) )
52, 4sylan2 461 . . 3  |-  ( ( A  e.  Fin  /\  B  C_  RR )  -> 
( A. x  e.  A  E. y  e.  B  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) ) ) )
653adant2 976 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) ) )
7 r19.2z 3661 . . . . . . . . . . . 12  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
8 rexn0 3674 . . . . . . . . . . . . 13  |-  ( E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) )
98rexlimivw 2770 . . . . . . . . . . . 12  |-  ( E. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) )
107, 9syl 16 . . . . . . . . . . 11  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  w  =/=  (/) )
1110ex 424 . . . . . . . . . 10  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
12113ad2ant2 979 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
1312ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
14 sstr 3300 . . . . . . . . . . . . . 14  |-  ( ( w  C_  B  /\  B  C_  RR )  ->  w  C_  RR )
1514ancoms 440 . . . . . . . . . . . . 13  |-  ( ( B  C_  RR  /\  w  C_  B )  ->  w  C_  RR )
16 fimaxre 9888 . . . . . . . . . . . . . 14  |-  ( ( w  C_  RR  /\  w  e.  Fin  /\  w  =/=  (/) )  ->  E. y  e.  w  A. u  e.  w  u  <_  y )
17163expia 1155 . . . . . . . . . . . . 13  |-  ( ( w  C_  RR  /\  w  e.  Fin )  ->  (
w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
1815, 17sylan 458 . . . . . . . . . . . 12  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  w  e.  Fin )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
1918anasss 629 . . . . . . . . . . 11  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  w  e.  Fin )
)  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2019ancom2s 778 . . . . . . . . . 10  |-  ( ( B  C_  RR  /\  (
w  e.  Fin  /\  w  C_  B ) )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
21203ad2antl3 1121 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  (
w  e.  Fin  /\  w  C_  B ) )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2221anassrs 630 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2313, 22syld 42 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2423a1dd 44 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) ) )
2524ex 424 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
w  C_  B  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) ) ) )
26253impd 1167 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
27 nfv 1626 . . . . . . . . . . . 12  |-  F/ y ( B  C_  RR  /\  w  C_  B )
28 nfcv 2524 . . . . . . . . . . . . 13  |-  F/_ y A
29 nfre1 2706 . . . . . . . . . . . . 13  |-  F/ y E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3028, 29nfral 2703 . . . . . . . . . . . 12  |-  F/ y A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3127, 30nfan 1836 . . . . . . . . . . 11  |-  F/ y ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
32 nfv 1626 . . . . . . . . . . . . . . 15  |-  F/ z ( B  C_  RR  /\  w  C_  B )
33 nfcv 2524 . . . . . . . . . . . . . . . 16  |-  F/_ z A
34 nfcv 2524 . . . . . . . . . . . . . . . . 17  |-  F/_ z
w
35 nfra1 2700 . . . . . . . . . . . . . . . . 17  |-  F/ z A. z  e.  B  ( y  <_  z  ->  ph )
3634, 35nfrex 2705 . . . . . . . . . . . . . . . 16  |-  F/ z E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3733, 36nfral 2703 . . . . . . . . . . . . . . 15  |-  F/ z A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3832, 37nfan 1836 . . . . . . . . . . . . . 14  |-  F/ z ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
39 nfv 1626 . . . . . . . . . . . . . 14  |-  F/ z ( y  e.  w  /\  A. u  e.  w  u  <_  y )
4038, 39nfan 1836 . . . . . . . . . . . . 13  |-  F/ z ( ( ( B 
C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )
41 breq1 4157 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  v  ->  (
y  <_  z  <->  v  <_  z ) )
4241imbi1d 309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  v  ->  (
( y  <_  z  ->  ph )  <->  ( v  <_  z  ->  ph ) ) )
4342ralbidv 2670 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  v  ->  ( A. z  e.  B  ( y  <_  z  ->  ph )  <->  A. z  e.  B  ( v  <_  z  ->  ph ) ) )
4443cbvrexv 2877 . . . . . . . . . . . . . . . . . . 19  |-  ( E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  <->  E. v  e.  w  A. z  e.  B  ( v  <_  z  ->  ph ) )
45 rsp 2710 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. z  e.  B  (
v  <_  z  ->  ph )  ->  ( z  e.  B  ->  ( v  <_  z  ->  ph )
) )
46 ssel2 3287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  C_  B  /\  v  e.  w )  ->  v  e.  B )
47 ssel2 3287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  C_  RR  /\  v  e.  B )  ->  v  e.  RR )
4846, 47sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  v  e.  w )
)  ->  v  e.  RR )
4948anassrs 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  v  e.  w
)  ->  v  e.  RR )
5049adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  v  e.  w )  ->  v  e.  RR )
5150adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  e.  RR )
52 ssel2 3287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  C_  B  /\  y  e.  w )  ->  y  e.  B )
53 ssel2 3287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  C_  RR  /\  y  e.  B )  ->  y  e.  RR )
5452, 53sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  y  e.  w )
)  ->  y  e.  RR )
5554anassrs 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  y  e.  w
)  ->  y  e.  RR )
5655adantrr 698 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  y  e.  RR )
5756ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  y  e.  RR )
58 ssel2 3287 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  z  e.  B )  ->  z  e.  RR )
5958adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  z  e.  B
)  ->  z  e.  RR )
6059ad2ant2r 728 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  (
z  e.  B  /\  y  <_  z ) )  ->  z  e.  RR )
6160adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  z  e.  RR )
62 breq1 4157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  v  ->  (
u  <_  y  <->  v  <_  y ) )
6362rspccva 2995 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A. u  e.  w  u  <_  y  /\  v  e.  w )  ->  v  <_  y )
6463adantll 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  w  /\  A. u  e.  w  u  <_  y )  /\  v  e.  w )  ->  v  <_  y )
6564adantll 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  v  e.  w )  ->  v  <_  y )
6665adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  <_  y )
67 simplrr 738 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  y  <_  z )
6851, 57, 61, 66, 67letrd 9160 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  <_  z )
69 pm2.27 37 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  B  ->  (
( z  e.  B  ->  ( v  <_  z  ->  ph ) )  -> 
( v  <_  z  ->  ph ) ) )
7069adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  B  /\  y  <_  z )  -> 
( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ( v  <_ 
z  ->  ph ) ) )
7170ad2antlr 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ( v  <_ 
z  ->  ph ) ) )
7268, 71mpid 39 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ph ) )
7345, 72syl5 30 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( A. z  e.  B  ( v  <_ 
z  ->  ph )  ->  ph ) )
7473adantlr 696 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( B  C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  /\  v  e.  w
)  ->  ( A. z  e.  B  (
v  <_  z  ->  ph )  ->  ph ) )
7574rexlimdva 2774 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  ->  ( E. v  e.  w  A. z  e.  B  ( v  <_ 
z  ->  ph )  ->  ph ) )
7644, 75syl5bi 209 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  ->  ( E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  ph ) )
7776ralimdva 2728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  (
z  e.  B  /\  y  <_  z ) )  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  A. x  e.  A  ph ) )
7877imp 419 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  A. x  e.  A  ph )
7978an32s 780 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  ->  A. x  e.  A  ph )
8079exp32 589 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  (
z  e.  B  -> 
( y  <_  z  ->  A. x  e.  A  ph ) ) )
8180an32s 780 . . . . . . . . . . . . 13  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  (
z  e.  B  -> 
( y  <_  z  ->  A. x  e.  A  ph ) ) )
8240, 81ralrimi 2731 . . . . . . . . . . . 12  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) )
8382exp32 589 . . . . . . . . . . 11  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  -> 
( y  e.  w  ->  ( A. u  e.  w  u  <_  y  ->  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
8431, 83reximdai 2758 . . . . . . . . . 10  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8584adantrr 698 . . . . . . . . 9  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
86 ssrexv 3352 . . . . . . . . . 10  |-  ( w 
C_  B  ->  ( E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8786ad2antlr 708 . . . . . . . . 9  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  A. x  e.  A  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8885, 87syld 42 . . . . . . . 8  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8988exp43 596 . . . . . . 7  |-  ( B 
C_  RR  ->  ( w 
C_  B  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) ) ) )
90893impd 1167 . . . . . 6  |-  ( B 
C_  RR  ->  ( ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
91903ad2ant3 980 . . . . 5  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
9291adantr 452 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
9326, 92mpdd 38 . . 3  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
9493rexlimdva 2774 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( E. w  e.  Fin  (
w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
956, 94syld 42 1  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651   _Vcvv 2900    C_ wss 3264   (/)c0 3572   class class class wbr 4154   Fincfn 7046   RRcr 8923    <_ cle 9055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-pre-lttri 8998  ax-pre-lttrn 8999
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-1o 6661  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060
  Copyright terms: Public domain W3C validator