Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filbcmb Structured version   Unicode version

Theorem filbcmb 26433
Description: Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
filbcmb  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    ph, y
Allowed substitution hints:    ph( x, z)

Proof of Theorem filbcmb
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9073 . . . . 5  |-  RR  e.  _V
21ssex 4339 . . . 4  |-  ( B 
C_  RR  ->  B  e. 
_V )
3 indexfi 7406 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  _V  /\  A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )
433expia 1155 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  _V )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) ) ) )
52, 4sylan2 461 . . 3  |-  ( ( A  e.  Fin  /\  B  C_  RR )  -> 
( A. x  e.  A  E. y  e.  B  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) ) ) )
653adant2 976 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) ) )
7 r19.2z 3709 . . . . . . . . . . . 12  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
8 rexn0 3722 . . . . . . . . . . . . 13  |-  ( E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) )
98rexlimivw 2818 . . . . . . . . . . . 12  |-  ( E. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) )
107, 9syl 16 . . . . . . . . . . 11  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  w  =/=  (/) )
1110ex 424 . . . . . . . . . 10  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
12113ad2ant2 979 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
1312ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
14 sstr 3348 . . . . . . . . . . . . . 14  |-  ( ( w  C_  B  /\  B  C_  RR )  ->  w  C_  RR )
1514ancoms 440 . . . . . . . . . . . . 13  |-  ( ( B  C_  RR  /\  w  C_  B )  ->  w  C_  RR )
16 fimaxre 9947 . . . . . . . . . . . . . 14  |-  ( ( w  C_  RR  /\  w  e.  Fin  /\  w  =/=  (/) )  ->  E. y  e.  w  A. u  e.  w  u  <_  y )
17163expia 1155 . . . . . . . . . . . . 13  |-  ( ( w  C_  RR  /\  w  e.  Fin )  ->  (
w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
1815, 17sylan 458 . . . . . . . . . . . 12  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  w  e.  Fin )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
1918anasss 629 . . . . . . . . . . 11  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  w  e.  Fin )
)  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2019ancom2s 778 . . . . . . . . . 10  |-  ( ( B  C_  RR  /\  (
w  e.  Fin  /\  w  C_  B ) )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
21203ad2antl3 1121 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  (
w  e.  Fin  /\  w  C_  B ) )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2221anassrs 630 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2313, 22syld 42 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2423a1dd 44 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) ) )
2524ex 424 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
w  C_  B  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) ) ) )
26253impd 1167 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
27 nfv 1629 . . . . . . . . . . . 12  |-  F/ y ( B  C_  RR  /\  w  C_  B )
28 nfcv 2571 . . . . . . . . . . . . 13  |-  F/_ y A
29 nfre1 2754 . . . . . . . . . . . . 13  |-  F/ y E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3028, 29nfral 2751 . . . . . . . . . . . 12  |-  F/ y A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3127, 30nfan 1846 . . . . . . . . . . 11  |-  F/ y ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
32 nfv 1629 . . . . . . . . . . . . . . 15  |-  F/ z ( B  C_  RR  /\  w  C_  B )
33 nfcv 2571 . . . . . . . . . . . . . . . 16  |-  F/_ z A
34 nfcv 2571 . . . . . . . . . . . . . . . . 17  |-  F/_ z
w
35 nfra1 2748 . . . . . . . . . . . . . . . . 17  |-  F/ z A. z  e.  B  ( y  <_  z  ->  ph )
3634, 35nfrex 2753 . . . . . . . . . . . . . . . 16  |-  F/ z E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3733, 36nfral 2751 . . . . . . . . . . . . . . 15  |-  F/ z A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3832, 37nfan 1846 . . . . . . . . . . . . . 14  |-  F/ z ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
39 nfv 1629 . . . . . . . . . . . . . 14  |-  F/ z ( y  e.  w  /\  A. u  e.  w  u  <_  y )
4038, 39nfan 1846 . . . . . . . . . . . . 13  |-  F/ z ( ( ( B 
C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )
41 breq1 4207 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  v  ->  (
y  <_  z  <->  v  <_  z ) )
4241imbi1d 309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  v  ->  (
( y  <_  z  ->  ph )  <->  ( v  <_  z  ->  ph ) ) )
4342ralbidv 2717 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  v  ->  ( A. z  e.  B  ( y  <_  z  ->  ph )  <->  A. z  e.  B  ( v  <_  z  ->  ph ) ) )
4443cbvrexv 2925 . . . . . . . . . . . . . . . . . . 19  |-  ( E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  <->  E. v  e.  w  A. z  e.  B  ( v  <_  z  ->  ph ) )
45 rsp 2758 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. z  e.  B  (
v  <_  z  ->  ph )  ->  ( z  e.  B  ->  ( v  <_  z  ->  ph )
) )
46 ssel2 3335 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  C_  B  /\  v  e.  w )  ->  v  e.  B )
47 ssel2 3335 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  C_  RR  /\  v  e.  B )  ->  v  e.  RR )
4846, 47sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  v  e.  w )
)  ->  v  e.  RR )
4948anassrs 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  v  e.  w
)  ->  v  e.  RR )
5049adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  v  e.  w )  ->  v  e.  RR )
5150adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  e.  RR )
52 ssel2 3335 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  C_  B  /\  y  e.  w )  ->  y  e.  B )
53 ssel2 3335 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  C_  RR  /\  y  e.  B )  ->  y  e.  RR )
5452, 53sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  y  e.  w )
)  ->  y  e.  RR )
5554anassrs 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  y  e.  w
)  ->  y  e.  RR )
5655adantrr 698 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  y  e.  RR )
5756ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  y  e.  RR )
58 ssel2 3335 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  z  e.  B )  ->  z  e.  RR )
5958adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  z  e.  B
)  ->  z  e.  RR )
6059ad2ant2r 728 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  (
z  e.  B  /\  y  <_  z ) )  ->  z  e.  RR )
6160adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  z  e.  RR )
62 breq1 4207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  v  ->  (
u  <_  y  <->  v  <_  y ) )
6362rspccva 3043 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A. u  e.  w  u  <_  y  /\  v  e.  w )  ->  v  <_  y )
6463adantll 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  w  /\  A. u  e.  w  u  <_  y )  /\  v  e.  w )  ->  v  <_  y )
6564adantll 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  v  e.  w )  ->  v  <_  y )
6665adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  <_  y )
67 simplrr 738 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  y  <_  z )
6851, 57, 61, 66, 67letrd 9219 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  <_  z )
69 pm2.27 37 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  B  ->  (
( z  e.  B  ->  ( v  <_  z  ->  ph ) )  -> 
( v  <_  z  ->  ph ) ) )
7069adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  B  /\  y  <_  z )  -> 
( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ( v  <_ 
z  ->  ph ) ) )
7170ad2antlr 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ( v  <_ 
z  ->  ph ) ) )
7268, 71mpid 39 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ph ) )
7345, 72syl5 30 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( A. z  e.  B  ( v  <_ 
z  ->  ph )  ->  ph ) )
7473adantlr 696 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( B  C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  /\  v  e.  w
)  ->  ( A. z  e.  B  (
v  <_  z  ->  ph )  ->  ph ) )
7574rexlimdva 2822 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  ->  ( E. v  e.  w  A. z  e.  B  ( v  <_ 
z  ->  ph )  ->  ph ) )
7644, 75syl5bi 209 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  ->  ( E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  ph ) )
7776ralimdva 2776 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  (
z  e.  B  /\  y  <_  z ) )  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  A. x  e.  A  ph ) )
7877imp 419 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  A. x  e.  A  ph )
7978an32s 780 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  ->  A. x  e.  A  ph )
8079exp32 589 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  (
z  e.  B  -> 
( y  <_  z  ->  A. x  e.  A  ph ) ) )
8180an32s 780 . . . . . . . . . . . . 13  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  (
z  e.  B  -> 
( y  <_  z  ->  A. x  e.  A  ph ) ) )
8240, 81ralrimi 2779 . . . . . . . . . . . 12  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) )
8382exp32 589 . . . . . . . . . . 11  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  -> 
( y  e.  w  ->  ( A. u  e.  w  u  <_  y  ->  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
8431, 83reximdai 2806 . . . . . . . . . 10  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8584adantrr 698 . . . . . . . . 9  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
86 ssrexv 3400 . . . . . . . . . 10  |-  ( w 
C_  B  ->  ( E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8786ad2antlr 708 . . . . . . . . 9  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  A. x  e.  A  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8885, 87syld 42 . . . . . . . 8  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8988exp43 596 . . . . . . 7  |-  ( B 
C_  RR  ->  ( w 
C_  B  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) ) ) )
90893impd 1167 . . . . . 6  |-  ( B 
C_  RR  ->  ( ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
91903ad2ant3 980 . . . . 5  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
9291adantr 452 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
9326, 92mpdd 38 . . 3  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
9493rexlimdva 2822 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( E. w  e.  Fin  (
w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
956, 94syld 42 1  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   (/)c0 3620   class class class wbr 4204   Fincfn 7101   RRcr 8981    <_ cle 9113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-1o 6716  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118
  Copyright terms: Public domain W3C validator