MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fileln0 Unicode version

Theorem fileln0 17545
Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
fileln0  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  A  =/=  (/) )

Proof of Theorem fileln0
StepHypRef Expression
1 id 19 . 2  |-  ( A  e.  F  ->  A  e.  F )
2 0nelfil 17544 . 2  |-  ( F  e.  ( Fil `  X
)  ->  -.  (/)  e.  F
)
3 nelne2 2536 . 2  |-  ( ( A  e.  F  /\  -.  (/)  e.  F )  ->  A  =/=  (/) )
41, 2, 3syl2anr 464 1  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    e. wcel 1684    =/= wne 2446   (/)c0 3455   ` cfv 5255   Filcfil 17540
This theorem is referenced by:  filinn0  17555  filintn0  17556  alexsublem  17738  cfil3i  18695  iscmet3  18719  lvsovso3  25628  filnetlem4  26330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-fbas 17520  df-fil 17541
  Copyright terms: Public domain W3C validator