MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filin Unicode version

Theorem filin 17800
Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filin  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  i^i  B )  e.  F )

Proof of Theorem filin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 filfbas 17794 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2 fbasssin 17782 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. x  e.  F  x  C_  ( A  i^i  B ) )
31, 2syl3an1 1217 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. x  e.  F  x  C_  ( A  i^i  B ) )
4 inss1 3497 . . . . 5  |-  ( A  i^i  B )  C_  A
5 filelss 17798 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  A  C_  X )
64, 5syl5ss 3295 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( A  i^i  B )  C_  X )
7 filss 17799 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  ( A  i^i  B ) 
C_  X  /\  x  C_  ( A  i^i  B
) ) )  -> 
( A  i^i  B
)  e.  F )
873exp2 1171 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( ( A  i^i  B ) 
C_  X  ->  (
x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F ) ) ) )
98com23 74 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( ( A  i^i  B )  C_  X  ->  ( x  e.  F  ->  ( x  C_  ( A  i^i  B
)  ->  ( A  i^i  B )  e.  F
) ) ) )
109imp 419 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  i^i  B )  C_  X )  ->  (
x  e.  F  -> 
( x  C_  ( A  i^i  B )  -> 
( A  i^i  B
)  e.  F ) ) )
1110rexlimdv 2765 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  i^i  B )  C_  X )  ->  ( E. x  e.  F  x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F
) )
126, 11syldan 457 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( E. x  e.  F  x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F
) )
13123adant3 977 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( E. x  e.  F  x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F
) )
143, 13mpd 15 1  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  i^i  B )  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1717   E.wrex 2643    i^i cin 3255    C_ wss 3256   ` cfv 5387   fBascfbas 16608   Filcfil 17791
This theorem is referenced by:  isfil2  17802  filfi  17805  filinn0  17806  infil  17809  filcon  17829  filuni  17831  trfil2  17833  trfilss  17835  ufprim  17855  filufint  17866  rnelfmlem  17898  rnelfm  17899  fmfnfmlem2  17901  fmfnfmlem3  17902  fmfnfmlem4  17903  fmfnfm  17904  txflf  17952  fclsrest  17970  metust  18471  filnetlem3  26093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fv 5395  df-fbas 16616  df-fil 17792
  Copyright terms: Public domain W3C validator