Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem3 Unicode version

Theorem filnetlem3 26307
Description: Lemma for filnet 26309. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h  |-  H  = 
U_ n  e.  F  ( { n }  X.  n )
filnet.d  |-  D  =  { <. x ,  y
>.  |  ( (
x  e.  H  /\  y  e.  H )  /\  ( 1st `  y
)  C_  ( 1st `  x ) ) }
Assertion
Ref Expression
filnetlem3  |-  ( H  =  U. U. D  /\  ( F  e.  ( Fil `  X )  ->  ( H  C_  ( F  X.  X
)  /\  D  e.  DirRel ) ) )
Distinct variable groups:    x, y, n, F    x, H, y   
n, X
Allowed substitution hints:    D( x, y, n)    H( n)    X( x, y)

Proof of Theorem filnetlem3
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmresi 5163 . . . . . 6  |-  dom  (  _I  |`  H )  =  H
2 filnet.h . . . . . . . . 9  |-  H  = 
U_ n  e.  F  ( { n }  X.  n )
3 filnet.d . . . . . . . . 9  |-  D  =  { <. x ,  y
>.  |  ( (
x  e.  H  /\  y  e.  H )  /\  ( 1st `  y
)  C_  ( 1st `  x ) ) }
42, 3filnetlem2 26306 . . . . . . . 8  |-  ( (  _I  |`  H )  C_  D  /\  D  C_  ( H  X.  H
) )
54simpli 445 . . . . . . 7  |-  (  _I  |`  H )  C_  D
6 dmss 5036 . . . . . . 7  |-  ( (  _I  |`  H )  C_  D  ->  dom  (  _I  |`  H )  C_  dom  D )
75, 6ax-mp 8 . . . . . 6  |-  dom  (  _I  |`  H )  C_  dom  D
81, 7eqsstr3i 3347 . . . . 5  |-  H  C_  dom  D
9 ssun1 3478 . . . . 5  |-  dom  D  C_  ( dom  D  u.  ran  D )
108, 9sstri 3325 . . . 4  |-  H  C_  ( dom  D  u.  ran  D )
11 dmrnssfld 5096 . . . 4  |-  ( dom 
D  u.  ran  D
)  C_  U. U. D
1210, 11sstri 3325 . . 3  |-  H  C_  U.
U. D
134simpri 449 . . . . 5  |-  D  C_  ( H  X.  H
)
14 uniss 4004 . . . . 5  |-  ( D 
C_  ( H  X.  H )  ->  U. D  C_ 
U. ( H  X.  H ) )
15 uniss 4004 . . . . 5  |-  ( U. D  C_  U. ( H  X.  H )  ->  U. U. D  C_  U. U. ( H  X.  H
) )
1613, 14, 15mp2b 10 . . . 4  |-  U. U. D  C_  U. U. ( H  X.  H )
17 unixpss 4955 . . . . 5  |-  U. U. ( H  X.  H
)  C_  ( H  u.  H )
18 unidm 3458 . . . . 5  |-  ( H  u.  H )  =  H
1917, 18sseqtri 3348 . . . 4  |-  U. U. ( H  X.  H
)  C_  H
2016, 19sstri 3325 . . 3  |-  U. U. D  C_  H
2112, 20eqssi 3332 . 2  |-  H  = 
U. U. D
22 filelss 17845 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  n  e.  F )  ->  n  C_  X )
23 xpss2 4952 . . . . . . . 8  |-  ( n 
C_  X  ->  ( { n }  X.  n )  C_  ( { n }  X.  X ) )
2422, 23syl 16 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  n  e.  F )  ->  ( { n }  X.  n )  C_  ( { n }  X.  X ) )
2524ralrimiva 2757 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  A. n  e.  F  ( {
n }  X.  n
)  C_  ( {
n }  X.  X
) )
26 ss2iun 4076 . . . . . 6  |-  ( A. n  e.  F  ( { n }  X.  n )  C_  ( { n }  X.  X )  ->  U_ n  e.  F  ( {
n }  X.  n
)  C_  U_ n  e.  F  ( { n }  X.  X ) )
2725, 26syl 16 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  U_ n  e.  F  ( { n }  X.  n )  C_  U_ n  e.  F  ( { n }  X.  X ) )
28 iunxpconst 4901 . . . . 5  |-  U_ n  e.  F  ( {
n }  X.  X
)  =  ( F  X.  X )
2927, 28syl6sseq 3362 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  U_ n  e.  F  ( { n }  X.  n )  C_  ( F  X.  X
) )
302, 29syl5eqss 3360 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  H  C_  ( F  X.  X ) )
315a1i 11 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  (  _I  |`  H )  C_  D
)
323relopabi 4967 . . . . 5  |-  Rel  D
3331, 32jctil 524 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( Rel  D  /\  (  _I  |`  H ) 
C_  D ) )
34 simpl 444 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  F  e.  ( Fil `  X ) )
3530adantr 452 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  H  C_  ( F  X.  X ) )
36 simprl 733 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  v  e.  H )
3735, 36sseldd 3317 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  v  e.  ( F  X.  X
) )
38 xp1st 6343 . . . . . . . . . . 11  |-  ( v  e.  ( F  X.  X )  ->  ( 1st `  v )  e.  F )
3937, 38syl 16 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  ( 1st `  v )  e.  F
)
40 simprr 734 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  z  e.  H )
4135, 40sseldd 3317 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  z  e.  ( F  X.  X
) )
42 xp1st 6343 . . . . . . . . . . 11  |-  ( z  e.  ( F  X.  X )  ->  ( 1st `  z )  e.  F )
4341, 42syl 16 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  ( 1st `  z )  e.  F
)
44 filinn0 17853 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  ( 1st `  v )  e.  F  /\  ( 1st `  z )  e.  F
)  ->  ( ( 1st `  v )  i^i  ( 1st `  z
) )  =/=  (/) )
4534, 39, 43, 44syl3anc 1184 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  ( ( 1st `  v )  i^i  ( 1st `  z
) )  =/=  (/) )
46 n0 3605 . . . . . . . . 9  |-  ( ( ( 1st `  v
)  i^i  ( 1st `  z ) )  =/=  (/) 
<->  E. u  u  e.  ( ( 1st `  v
)  i^i  ( 1st `  z ) ) )
4745, 46sylib 189 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  E. u  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )
4836adantr 452 . . . . . . . . . 10  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  -> 
v  e.  H )
49 filin 17847 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ( Fil `  X )  /\  ( 1st `  v )  e.  F  /\  ( 1st `  z )  e.  F
)  ->  ( ( 1st `  v )  i^i  ( 1st `  z
) )  e.  F
)
5034, 39, 43, 49syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  ( ( 1st `  v )  i^i  ( 1st `  z
) )  e.  F
)
5150adantr 452 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  -> 
( ( 1st `  v
)  i^i  ( 1st `  z ) )  e.  F )
52 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  ->  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )
53 id 20 . . . . . . . . . . . . 13  |-  ( n  =  ( ( 1st `  v )  i^i  ( 1st `  z ) )  ->  n  =  ( ( 1st `  v
)  i^i  ( 1st `  z ) ) )
5453opeliunxp2 4980 . . . . . . . . . . . 12  |-  ( <.
( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  U_ n  e.  F  ( {
n }  X.  n
)  <->  ( ( ( 1st `  v )  i^i  ( 1st `  z
) )  e.  F  /\  u  e.  (
( 1st `  v
)  i^i  ( 1st `  z ) ) ) )
5551, 52, 54sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  ->  <. ( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  U_ n  e.  F  ( {
n }  X.  n
) )
5655, 2syl6eleqr 2503 . . . . . . . . . 10  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  ->  <. ( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  H
)
57 fvex 5709 . . . . . . . . . . . . . 14  |-  ( 1st `  v )  e.  _V
5857inex1 4312 . . . . . . . . . . . . 13  |-  ( ( 1st `  v )  i^i  ( 1st `  z
) )  e.  _V
59 vex 2927 . . . . . . . . . . . . 13  |-  u  e. 
_V
6058, 59op1st 6322 . . . . . . . . . . . 12  |-  ( 1st `  <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >. )  =  ( ( 1st `  v )  i^i  ( 1st `  z ) )
61 inss1 3529 . . . . . . . . . . . 12  |-  ( ( 1st `  v )  i^i  ( 1st `  z
) )  C_  ( 1st `  v )
6260, 61eqsstri 3346 . . . . . . . . . . 11  |-  ( 1st `  <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >. )  C_  ( 1st `  v
)
63 vex 2927 . . . . . . . . . . . 12  |-  v  e. 
_V
64 opex 4395 . . . . . . . . . . . 12  |-  <. (
( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  _V
652, 3, 63, 64filnetlem1 26305 . . . . . . . . . . 11  |-  ( v D <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >.  <->  ( (
v  e.  H  /\  <.
( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  H
)  /\  ( 1st ` 
<. ( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >. )  C_  ( 1st `  v ) ) )
6662, 65mpbiran2 886 . . . . . . . . . 10  |-  ( v D <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >.  <->  ( v  e.  H  /\  <. (
( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  H
) )
6748, 56, 66sylanbrc 646 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  -> 
v D <. (
( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >. )
6840adantr 452 . . . . . . . . . 10  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  -> 
z  e.  H )
69 inss2 3530 . . . . . . . . . . . 12  |-  ( ( 1st `  v )  i^i  ( 1st `  z
) )  C_  ( 1st `  z )
7060, 69eqsstri 3346 . . . . . . . . . . 11  |-  ( 1st `  <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >. )  C_  ( 1st `  z
)
71 vex 2927 . . . . . . . . . . . 12  |-  z  e. 
_V
722, 3, 71, 64filnetlem1 26305 . . . . . . . . . . 11  |-  ( z D <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >.  <->  ( (
z  e.  H  /\  <.
( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  H
)  /\  ( 1st ` 
<. ( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >. )  C_  ( 1st `  z ) ) )
7370, 72mpbiran2 886 . . . . . . . . . 10  |-  ( z D <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >.  <->  ( z  e.  H  /\  <. (
( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  e.  H
) )
7468, 56, 73sylanbrc 646 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  -> 
z D <. (
( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >. )
75 breq2 4184 . . . . . . . . . . 11  |-  ( w  =  <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >.  ->  (
v D w  <->  v D <. ( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >. ) )
76 breq2 4184 . . . . . . . . . . 11  |-  ( w  =  <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >.  ->  (
z D w  <->  z D <. ( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >. ) )
7775, 76anbi12d 692 . . . . . . . . . 10  |-  ( w  =  <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >.  ->  (
( v D w  /\  z D w )  <->  ( v D
<. ( ( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  /\  z D <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >. )
) )
7864, 77spcev 3011 . . . . . . . . 9  |-  ( ( v D <. (
( 1st `  v
)  i^i  ( 1st `  z ) ) ,  u >.  /\  z D <. ( ( 1st `  v )  i^i  ( 1st `  z ) ) ,  u >. )  ->  E. w ( v D w  /\  z D w ) )
7967, 74, 78syl2anc 643 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  ( v  e.  H  /\  z  e.  H ) )  /\  u  e.  ( ( 1st `  v )  i^i  ( 1st `  z
) ) )  ->  E. w ( v D w  /\  z D w ) )
8047, 79exlimddv 1645 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
v  e.  H  /\  z  e.  H )
)  ->  E. w
( v D w  /\  z D w ) )
8180ralrimivva 2766 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  A. v  e.  H  A. z  e.  H  E. w
( v D w  /\  z D w ) )
82 codir 5221 . . . . . 6  |-  ( ( H  X.  H ) 
C_  ( `' D  o.  D )  <->  A. v  e.  H  A. z  e.  H  E. w
( v D w  /\  z D w ) )
8381, 82sylibr 204 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  ( H  X.  H )  C_  ( `' D  o.  D
) )
84 vex 2927 . . . . . . . . . . . . 13  |-  w  e. 
_V
852, 3, 63, 84filnetlem1 26305 . . . . . . . . . . . 12  |-  ( v D w  <->  ( (
v  e.  H  /\  w  e.  H )  /\  ( 1st `  w
)  C_  ( 1st `  v ) ) )
8685simplbi 447 . . . . . . . . . . 11  |-  ( v D w  ->  (
v  e.  H  /\  w  e.  H )
)
8786simpld 446 . . . . . . . . . 10  |-  ( v D w  ->  v  e.  H )
882, 3, 84, 71filnetlem1 26305 . . . . . . . . . . . 12  |-  ( w D z  <->  ( (
w  e.  H  /\  z  e.  H )  /\  ( 1st `  z
)  C_  ( 1st `  w ) ) )
8988simplbi 447 . . . . . . . . . . 11  |-  ( w D z  ->  (
w  e.  H  /\  z  e.  H )
)
9089simprd 450 . . . . . . . . . 10  |-  ( w D z  ->  z  e.  H )
9187, 90anim12i 550 . . . . . . . . 9  |-  ( ( v D w  /\  w D z )  -> 
( v  e.  H  /\  z  e.  H
) )
9288simprbi 451 . . . . . . . . . 10  |-  ( w D z  ->  ( 1st `  z )  C_  ( 1st `  w ) )
9385simprbi 451 . . . . . . . . . 10  |-  ( v D w  ->  ( 1st `  w )  C_  ( 1st `  v ) )
9492, 93sylan9ssr 3330 . . . . . . . . 9  |-  ( ( v D w  /\  w D z )  -> 
( 1st `  z
)  C_  ( 1st `  v ) )
952, 3, 63, 71filnetlem1 26305 . . . . . . . . 9  |-  ( v D z  <->  ( (
v  e.  H  /\  z  e.  H )  /\  ( 1st `  z
)  C_  ( 1st `  v ) ) )
9691, 94, 95sylanbrc 646 . . . . . . . 8  |-  ( ( v D w  /\  w D z )  -> 
v D z )
9796ax-gen 1552 . . . . . . 7  |-  A. z
( ( v D w  /\  w D z )  ->  v D z )
9897gen2 1553 . . . . . 6  |-  A. v A. w A. z ( ( v D w  /\  w D z )  ->  v D
z )
99 cotr 5213 . . . . . 6  |-  ( ( D  o.  D ) 
C_  D  <->  A. v A. w A. z ( ( v D w  /\  w D z )  ->  v D
z ) )
10098, 99mpbir 201 . . . . 5  |-  ( D  o.  D )  C_  D
10183, 100jctil 524 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( ( D  o.  D )  C_  D  /\  ( H  X.  H )  C_  ( `' D  o.  D
) ) )
102 filtop 17848 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
103 xpexg 4956 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  X  e.  F )  ->  ( F  X.  X )  e. 
_V )
104102, 103mpdan 650 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  ( F  X.  X )  e.  _V )
105104, 30ssexd 4318 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  H  e.  _V )
106 xpexg 4956 . . . . . . 7  |-  ( ( H  e.  _V  /\  H  e.  _V )  ->  ( H  X.  H
)  e.  _V )
107105, 105, 106syl2anc 643 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( H  X.  H )  e.  _V )
108 ssexg 4317 . . . . . 6  |-  ( ( D  C_  ( H  X.  H )  /\  ( H  X.  H )  e. 
_V )  ->  D  e.  _V )
10913, 107, 108sylancr 645 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  D  e.  _V )
11021isdir 14640 . . . . 5  |-  ( D  e.  _V  ->  ( D  e.  DirRel  <->  ( ( Rel  D  /\  (  _I  |`  H )  C_  D
)  /\  ( ( D  o.  D )  C_  D  /\  ( H  X.  H )  C_  ( `' D  o.  D
) ) ) ) )
111109, 110syl 16 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( D  e.  DirRel 
<->  ( ( Rel  D  /\  (  _I  |`  H ) 
C_  D )  /\  ( ( D  o.  D )  C_  D  /\  ( H  X.  H
)  C_  ( `' D  o.  D )
) ) ) )
11233, 101, 111mpbir2and 889 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  D  e.  DirRel )
11330, 112jca 519 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( H  C_  ( F  X.  X
)  /\  D  e.  DirRel ) )
11421, 113pm3.2i 442 1  |-  ( H  =  U. U. D  /\  ( F  e.  ( Fil `  X )  ->  ( H  C_  ( F  X.  X
)  /\  D  e.  DirRel ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   _Vcvv 2924    u. cun 3286    i^i cin 3287    C_ wss 3288   (/)c0 3596   {csn 3782   <.cop 3785   U.cuni 3983   U_ciun 4061   class class class wbr 4180   {copab 4233    _I cid 4461    X. cxp 4843   `'ccnv 4844   dom cdm 4845   ran crn 4846    |` cres 4847    o. ccom 4849   Rel wrel 4850   ` cfv 5421   1stc1st 6314   DirRelcdir 14636   Filcfil 17838
This theorem is referenced by:  filnetlem4  26308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-1st 6316  df-dir 14638  df-fbas 16662  df-fil 17839
  Copyright terms: Public domain W3C validator