MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufilg Unicode version

Theorem filssufilg 17622
Description: A filter is contained in some ultrafilter. This version of filssufil 17623 contains the choice as a hypothesis (in the assumption that  ~P ~P X is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filssufilg  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  E. f  e.  ( UFil `  X
) F  C_  f
)
Distinct variable groups:    f, F    f, X

Proof of Theorem filssufilg
Dummy variables  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  ~P ~P X  e.  dom  card )
2 rabss 3263 . . . . 5  |-  ( { g  e.  ( Fil `  X )  |  F  C_  g }  C_  ~P ~P X  <->  A. g  e.  ( Fil `  X ) ( F  C_  g  ->  g  e.  ~P ~P X ) )
3 filsspw 17562 . . . . . . 7  |-  ( g  e.  ( Fil `  X
)  ->  g  C_  ~P X )
4 vex 2804 . . . . . . . 8  |-  g  e. 
_V
54elpw 3644 . . . . . . 7  |-  ( g  e.  ~P ~P X  <->  g 
C_  ~P X )
63, 5sylibr 203 . . . . . 6  |-  ( g  e.  ( Fil `  X
)  ->  g  e.  ~P ~P X )
76a1d 22 . . . . 5  |-  ( g  e.  ( Fil `  X
)  ->  ( F  C_  g  ->  g  e.  ~P ~P X ) )
82, 7mprgbir 2626 . . . 4  |-  { g  e.  ( Fil `  X
)  |  F  C_  g }  C_  ~P ~P X
9 ssnum 7682 . . . 4  |-  ( ( ~P ~P X  e. 
dom  card  /\  { g  e.  ( Fil `  X
)  |  F  C_  g }  C_  ~P ~P X )  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  e.  dom  card )
101, 8, 9sylancl 643 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  e.  dom  card )
11 ssid 3210 . . . . . . 7  |-  F  C_  F
1211jctr 526 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  ( Fil `  X
)  /\  F  C_  F
) )
13 sseq2 3213 . . . . . . 7  |-  ( g  =  F  ->  ( F  C_  g  <->  F  C_  F
) )
1413elrab 2936 . . . . . 6  |-  ( F  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( F  e.  ( Fil `  X
)  /\  F  C_  F
) )
1512, 14sylibr 203 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  { g  e.  ( Fil `  X )  |  F  C_  g } )
16 ne0i 3474 . . . . 5  |-  ( F  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  =/=  (/) )
1715, 16syl 15 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  =/=  (/) )
1817adantr 451 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  =/=  (/) )
19 simpr1 961 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  x  C_ 
{ g  e.  ( Fil `  X )  |  F  C_  g } )
20 ssrab 3264 . . . . . . . . . 10  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( x  C_  ( Fil `  X )  /\  A. g  e.  x  F  C_  g
) )
2119, 20sylib 188 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  (
x  C_  ( Fil `  X )  /\  A. g  e.  x  F  C_  g ) )
2221simpld 445 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  x  C_  ( Fil `  X
) )
23 simpr2 962 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  x  =/=  (/) )
24 simpr3 963 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  -> [ C.]  Or  x )
25 sorpssun 6300 . . . . . . . . . 10  |-  ( ( [
C.]  Or  x  /\  ( g  e.  x  /\  h  e.  x
) )  ->  (
g  u.  h )  e.  x )
2625ralrimivva 2648 . . . . . . . . 9  |-  ( [ C.]  Or  x  ->  A. g  e.  x  A. h  e.  x  ( g  u.  h )  e.  x
)
2724, 26syl 15 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  A. g  e.  x  A. h  e.  x  ( g  u.  h )  e.  x
)
28 filuni 17596 . . . . . . . 8  |-  ( ( x  C_  ( Fil `  X )  /\  x  =/=  (/)  /\  A. g  e.  x  A. h  e.  x  ( g  u.  h )  e.  x
)  ->  U. x  e.  ( Fil `  X
) )
2922, 23, 27, 28syl3anc 1182 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  U. x  e.  ( Fil `  X
) )
30 n0 3477 . . . . . . . . 9  |-  ( x  =/=  (/)  <->  E. h  h  e.  x )
31 ssel2 3188 . . . . . . . . . . . . . 14  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  h  e.  { g  e.  ( Fil `  X )  |  F  C_  g } )
32 sseq2 3213 . . . . . . . . . . . . . . 15  |-  ( g  =  h  ->  ( F  C_  g  <->  F  C_  h
) )
3332elrab 2936 . . . . . . . . . . . . . 14  |-  ( h  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( h  e.  ( Fil `  X
)  /\  F  C_  h
) )
3431, 33sylib 188 . . . . . . . . . . . . 13  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  (
h  e.  ( Fil `  X )  /\  F  C_  h ) )
3534simprd 449 . . . . . . . . . . . 12  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  F  C_  h )
36 ssuni 3865 . . . . . . . . . . . 12  |-  ( ( F  C_  h  /\  h  e.  x )  ->  F  C_  U. x
)
3735, 36sylancom 648 . . . . . . . . . . 11  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  F  C_ 
U. x )
3837ex 423 . . . . . . . . . 10  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  ( h  e.  x  ->  F  C_ 
U. x ) )
3938exlimdv 1626 . . . . . . . . 9  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  ( E. h  h  e.  x  ->  F  C_  U. x
) )
4030, 39syl5bi 208 . . . . . . . 8  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  ( x  =/=  (/)  ->  F  C_  U. x
) )
4119, 23, 40sylc 56 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  F  C_ 
U. x )
42 sseq2 3213 . . . . . . . 8  |-  ( g  =  U. x  -> 
( F  C_  g  <->  F 
C_  U. x ) )
4342elrab 2936 . . . . . . 7  |-  ( U. x  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( U. x  e.  ( Fil `  X
)  /\  F  C_  U. x
) )
4429, 41, 43sylanbrc 645 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } )
4544ex 423 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  ( (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )
4645alrimiv 1621 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  A. x
( ( x  C_  { g  e.  ( Fil `  X )  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )
4746adantr 451 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  A. x
( ( x  C_  { g  e.  ( Fil `  X )  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )
48 zornn0g 8148 . . 3  |-  ( ( { g  e.  ( Fil `  X )  |  F  C_  g }  e.  dom  card  /\  {
g  e.  ( Fil `  X )  |  F  C_  g }  =/=  (/)  /\  A. x ( ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )  ->  E. f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g } A. h  e. 
{ g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h
)
4910, 18, 47, 48syl3anc 1182 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  E. f  e.  { g  e.  ( Fil `  X )  |  F  C_  g } A. h  e.  {
g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h )
50 sseq2 3213 . . . . 5  |-  ( g  =  f  ->  ( F  C_  g  <->  F  C_  f
) )
5150elrab 2936 . . . 4  |-  ( f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( f  e.  ( Fil `  X
)  /\  F  C_  f
) )
5232ralrab 2940 . . . 4  |-  ( A. h  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  -.  f  C.  h  <->  A. h  e.  ( Fil `  X ) ( F  C_  h  ->  -.  f  C.  h
) )
53 simpll 730 . . . . . 6  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h ) )  -> 
f  e.  ( Fil `  X ) )
54 sstr2 3199 . . . . . . . . . . 11  |-  ( F 
C_  f  ->  (
f  C_  h  ->  F 
C_  h ) )
5554imim1d 69 . . . . . . . . . 10  |-  ( F 
C_  f  ->  (
( F  C_  h  ->  -.  f  C.  h
)  ->  ( f  C_  h  ->  -.  f  C.  h ) ) )
56 df-pss 3181 . . . . . . . . . . . . 13  |-  ( f 
C.  h  <->  ( f  C_  h  /\  f  =/=  h ) )
5756simplbi2 608 . . . . . . . . . . . 12  |-  ( f 
C_  h  ->  (
f  =/=  h  -> 
f  C.  h )
)
5857necon1bd 2527 . . . . . . . . . . 11  |-  ( f 
C_  h  ->  ( -.  f  C.  h  -> 
f  =  h ) )
5958a2i 12 . . . . . . . . . 10  |-  ( ( f  C_  h  ->  -.  f  C.  h )  ->  ( f  C_  h  ->  f  =  h ) )
6055, 59syl6 29 . . . . . . . . 9  |-  ( F 
C_  f  ->  (
( F  C_  h  ->  -.  f  C.  h
)  ->  ( f  C_  h  ->  f  =  h ) ) )
6160ralimdv 2635 . . . . . . . 8  |-  ( F 
C_  f  ->  ( A. h  e.  ( Fil `  X ) ( F  C_  h  ->  -.  f  C.  h )  ->  A. h  e.  ( Fil `  X ) ( f  C_  h  ->  f  =  h ) ) )
6261imp 418 . . . . . . 7  |-  ( ( F  C_  f  /\  A. h  e.  ( Fil `  X ) ( F 
C_  h  ->  -.  f  C.  h ) )  ->  A. h  e.  ( Fil `  X ) ( f  C_  h  ->  f  =  h ) )
6362adantll 694 . . . . . 6  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h ) )  ->  A. h  e.  ( Fil `  X ) ( f  C_  h  ->  f  =  h ) )
64 isufil2 17619 . . . . . 6  |-  ( f  e.  ( UFil `  X
)  <->  ( f  e.  ( Fil `  X
)  /\  A. h  e.  ( Fil `  X
) ( f  C_  h  ->  f  =  h ) ) )
6553, 63, 64sylanbrc 645 . . . . 5  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h ) )  -> 
f  e.  ( UFil `  X ) )
66 simplr 731 . . . . 5  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h ) )  ->  F  C_  f )
6765, 66jca 518 . . . 4  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h ) )  -> 
( f  e.  (
UFil `  X )  /\  F  C_  f ) )
6851, 52, 67syl2anb 465 . . 3  |-  ( ( f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  A. h  e.  { g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h
)  ->  ( f  e.  ( UFil `  X
)  /\  F  C_  f
) )
6968reximi2 2662 . 2  |-  ( E. f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g } A. h  e. 
{ g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h  ->  E. f  e.  (
UFil `  X ) F  C_  f )
7049, 69syl 15 1  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  E. f  e.  ( UFil `  X
) F  C_  f
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    u. cun 3163    C_ wss 3165    C. wpss 3166   (/)c0 3468   ~Pcpw 3638   U.cuni 3843    Or wor 4329   dom cdm 4705   ` cfv 5271   [ C.] crpss 6292   cardccrd 7584   Filcfil 17556   UFilcufil 17610
This theorem is referenced by:  filssufil  17623  numufl  17626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-rpss 6293  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-card 7588  df-cda 7810  df-fbas 17536  df-fg 17537  df-fil 17557  df-ufil 17612
  Copyright terms: Public domain W3C validator