MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvdisj Structured version   Unicode version

Theorem fimacnvdisj 5613
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 4881 . . . 4  |-  ran  F  =  dom  `' F
2 frn 5589 . . . . 5  |-  ( F : A --> B  ->  ran  F  C_  B )
32adantr 452 . . . 4  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ran  F 
C_  B )
41, 3syl5eqssr 3385 . . 3  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  dom  `' F  C_  B )
5 ssdisj 3669 . . 3  |-  ( ( dom  `' F  C_  B  /\  ( B  i^i  C )  =  (/) )  -> 
( dom  `' F  i^i  C )  =  (/) )
64, 5sylancom 649 . 2  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( dom  `' F  i^i  C )  =  (/) )
7 imadisj 5215 . 2  |-  ( ( `' F " C )  =  (/)  <->  ( dom  `' F  i^i  C )  =  (/) )
86, 7sylibr 204 1  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    i^i cin 3311    C_ wss 3312   (/)c0 3620   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873   -->wf 5442
This theorem is referenced by:  cantnf0  7622  vdwmc2  13339  gsumval3a  15504  psrbag0  16546  mbfconstlem  19513  itg1val2  19568  sibfof  24646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-f 5450
  Copyright terms: Public domain W3C validator