MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimax2g Unicode version

Theorem fimax2g 7282
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimax2g  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, R, y    x, A, y

Proof of Theorem fimax2g
StepHypRef Expression
1 sopo 4454 . . . . 5  |-  ( R  Or  A  ->  R  Po  A )
2 cnvpo 5343 . . . . 5  |-  ( R  Po  A  <->  `' R  Po  A )
31, 2sylib 189 . . . 4  |-  ( R  Or  A  ->  `' R  Po  A )
4 frfi 7281 . . . 4  |-  ( ( `' R  Po  A  /\  A  e.  Fin )  ->  `' R  Fr  A )
53, 4sylan 458 . . 3  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  `' R  Fr  A
)
653adant3 977 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  `' R  Fr  A )
7 ssid 3303 . . . . . . 7  |-  A  C_  A
8 fri 4478 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  `' R  Fr  A
)  /\  ( A  C_  A  /\  A  =/=  (/) ) )  ->  E. x  e.  A  A. y  e.  A  -.  y `' R x )
97, 8mpanr1 665 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  `' R  Fr  A
)  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  y `' R x )
109an32s 780 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  `' R  Fr  A
)  ->  E. x  e.  A  A. y  e.  A  -.  y `' R x )
11 vex 2895 . . . . . . . . 9  |-  y  e. 
_V
12 vex 2895 . . . . . . . . 9  |-  x  e. 
_V
1311, 12brcnv 4988 . . . . . . . 8  |-  ( y `' R x  <->  x R
y )
1413notbii 288 . . . . . . 7  |-  ( -.  y `' R x  <->  -.  x R y )
1514ralbii 2666 . . . . . 6  |-  ( A. y  e.  A  -.  y `' R x  <->  A. y  e.  A  -.  x R y )
1615rexbii 2667 . . . . 5  |-  ( E. x  e.  A  A. y  e.  A  -.  y `' R x  <->  E. x  e.  A  A. y  e.  A  -.  x R y )
1710, 16sylib 189 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  `' R  Fr  A
)  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
1817ex 424 . . 3  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  ( `' R  Fr  A  ->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
19183adant1 975 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( `' R  Fr  A  ->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
206, 19mpd 15 1  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643    C_ wss 3256   (/)c0 3564   class class class wbr 4146    Po wpo 4435    Or wor 4436    Fr wfr 4472   `'ccnv 4810   Fincfn 7038
This theorem is referenced by:  fimaxg  7283  ordunifi  7286  npomex  8799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-1o 6653  df-er 6834  df-en 7039  df-fin 7042
  Copyright terms: Public domain W3C validator