MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxg Unicode version

Theorem fimaxg 7104
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimaxg  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y R x ) )
Distinct variable groups:    x, R, y    x, A, y

Proof of Theorem fimaxg
StepHypRef Expression
1 fimax2g 7103 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
2 df-ne 2448 . . . . . . . . 9  |-  ( x  =/=  y  <->  -.  x  =  y )
32imbi1i 315 . . . . . . . 8  |-  ( ( x  =/=  y  -> 
y R x )  <-> 
( -.  x  =  y  ->  y R x ) )
4 pm4.64 361 . . . . . . . 8  |-  ( ( -.  x  =  y  ->  y R x )  <->  ( x  =  y  \/  y R x ) )
53, 4bitri 240 . . . . . . 7  |-  ( ( x  =/=  y  -> 
y R x )  <-> 
( x  =  y  \/  y R x ) )
6 sotric 4340 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x R y  <->  -.  (
x  =  y  \/  y R x ) ) )
76con2bid 319 . . . . . . 7  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( x  =  y  \/  y R x )  <->  -.  x R
y ) )
85, 7syl5bb 248 . . . . . 6  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( x  =/=  y  ->  y R x )  <->  -.  x R y ) )
98anassrs 629 . . . . 5  |-  ( ( ( R  Or  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x  =/=  y  ->  y R x )  <->  -.  x R y ) )
109ralbidva 2559 . . . 4  |-  ( ( R  Or  A  /\  x  e.  A )  ->  ( A. y  e.  A  ( x  =/=  y  ->  y R x )  <->  A. y  e.  A  -.  x R y ) )
1110rexbidva 2560 . . 3  |-  ( R  Or  A  ->  ( E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y R x )  <->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
12113ad2ant1 976 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y R x )  <->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
131, 12mpbird 223 1  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y R x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   (/)c0 3455   class class class wbr 4023    Or wor 4313   Fincfn 6863
This theorem is referenced by:  fisupg  7105  fimaxre  9701  fimaxOLD  26408  fimaxgOLD  26409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-fin 6867
  Copyright terms: Public domain W3C validator