MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Unicode version

Theorem fimaxre 9701
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fimaxre  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Distinct variable group:    x, A, y

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 8903 . . . 4  |-  <  Or  RR
2 soss 4332 . . . 4  |-  ( A 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  A ) )
31, 2mpi 16 . . 3  |-  ( A 
C_  RR  ->  <  Or  A )
4 fimaxg 7104 . . 3  |-  ( (  <  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
53, 4syl3an1 1215 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
6 ssel 3174 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
7 ssel 3174 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  y  e.  RR ) )
86, 7anim12d 546 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  RR  /\  y  e.  RR ) ) )
98imp 418 . . . . . . 7  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  e.  RR  /\  y  e.  RR ) )
10 leloe 8908 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
1110ancoms 439 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
12 equcom 1647 . . . . . . . . . . 11  |-  ( y  =  x  <->  x  =  y )
1312orbi2i 505 . . . . . . . . . 10  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( y  <  x  \/  x  =  y
) )
14 orcom 376 . . . . . . . . . 10  |-  ( ( y  <  x  \/  x  =  y )  <-> 
( x  =  y  \/  y  <  x
) )
15 neor 2530 . . . . . . . . . 10  |-  ( ( x  =  y  \/  y  <  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1613, 14, 153bitri 262 . . . . . . . . 9  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1711, 16syl6bb 252 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( x  =/=  y  -> 
y  <  x )
) )
1817biimprd 214 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  =/=  y  ->  y  <  x )  ->  y  <_  x ) )
199, 18syl 15 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2019anassrs 629 . . . . 5  |-  ( ( ( A  C_  RR  /\  x  e.  A )  /\  y  e.  A
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2120ralimdva 2621 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  ( A. y  e.  A  ( x  =/=  y  ->  y  <  x )  ->  A. y  e.  A  y  <_  x ) )
2221reximdva 2655 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
23223ad2ant1 976 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
245, 23mpd 14 1  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023    Or wor 4313   Fincfn 6863   RRcr 8736    < clt 8867    <_ cle 8868
This theorem is referenced by:  fimaxre2  9702  0ram2  13068  0ramcl  13070  ballotlemfc0  23051  ballotlemfcc  23052  fimaxreOLD  26430  filbcmb  26432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873
  Copyright terms: Public domain W3C validator