MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Unicode version

Theorem fimaxre 9717
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fimaxre  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Distinct variable group:    x, A, y

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 8919 . . . 4  |-  <  Or  RR
2 soss 4348 . . . 4  |-  ( A 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  A ) )
31, 2mpi 16 . . 3  |-  ( A 
C_  RR  ->  <  Or  A )
4 fimaxg 7120 . . 3  |-  ( (  <  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
53, 4syl3an1 1215 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
6 ssel 3187 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
7 ssel 3187 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  y  e.  RR ) )
86, 7anim12d 546 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  RR  /\  y  e.  RR ) ) )
98imp 418 . . . . . . 7  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  e.  RR  /\  y  e.  RR ) )
10 leloe 8924 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
1110ancoms 439 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
12 equcom 1665 . . . . . . . . . . 11  |-  ( y  =  x  <->  x  =  y )
1312orbi2i 505 . . . . . . . . . 10  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( y  <  x  \/  x  =  y
) )
14 orcom 376 . . . . . . . . . 10  |-  ( ( y  <  x  \/  x  =  y )  <-> 
( x  =  y  \/  y  <  x
) )
15 neor 2543 . . . . . . . . . 10  |-  ( ( x  =  y  \/  y  <  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1613, 14, 153bitri 262 . . . . . . . . 9  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1711, 16syl6bb 252 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( x  =/=  y  -> 
y  <  x )
) )
1817biimprd 214 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  =/=  y  ->  y  <  x )  ->  y  <_  x ) )
199, 18syl 15 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2019anassrs 629 . . . . 5  |-  ( ( ( A  C_  RR  /\  x  e.  A )  /\  y  e.  A
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2120ralimdva 2634 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  ( A. y  e.  A  ( x  =/=  y  ->  y  <  x )  ->  A. y  e.  A  y  <_  x ) )
2221reximdva 2668 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
23223ad2ant1 976 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
245, 23mpd 14 1  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   class class class wbr 4039    Or wor 4329   Fincfn 6879   RRcr 8752    < clt 8883    <_ cle 8884
This theorem is referenced by:  fimaxre2  9718  0ram2  13084  0ramcl  13086  ballotlemfc0  23067  ballotlemfcc  23068  fimaxreOLD  26533  filbcmb  26535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889
  Copyright terms: Public domain W3C validator