Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin Structured version   Unicode version

Theorem fin 5623
 Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin

Proof of Theorem fin
StepHypRef Expression
1 ssin 3563 . . . 4
21anbi2i 676 . . 3
3 anandi 802 . . 3
42, 3bitr3i 243 . 2
5 df-f 5458 . 2
6 df-f 5458 . . 3
7 df-f 5458 . . 3
86, 7anbi12i 679 . 2
94, 5, 83bitr4i 269 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   cin 3319   wss 3320   crn 4879   wfn 5449  wf 5450 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-in 3327  df-ss 3334  df-f 5458
 Copyright terms: Public domain W3C validator