MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin Unicode version

Theorem fin 5421
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )

Proof of Theorem fin
StepHypRef Expression
1 ssin 3391 . . . 4  |-  ( ( ran  F  C_  B  /\  ran  F  C_  C
)  <->  ran  F  C_  ( B  i^i  C ) )
21anbi2i 675 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
3 anandi 801 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
42, 3bitr3i 242 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C ) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
5 df-f 5259 . 2  |-  ( F : A --> ( B  i^i  C )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
6 df-f 5259 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
7 df-f 5259 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
86, 7anbi12i 678 . 2  |-  ( ( F : A --> B  /\  F : A --> C )  <-> 
( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C )
) )
94, 5, 83bitr4i 268 1  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    i^i cin 3151    C_ wss 3152   ran crn 4690    Fn wfn 5250   -->wf 5251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-ss 3166  df-f 5259
  Copyright terms: Public domain W3C validator