MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin11a Unicode version

Theorem fin11a 8198
Description: Every I-finite set is Ia-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin11a  |-  ( A  e.  Fin  ->  A  e. FinIa
)

Proof of Theorem fin11a
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elpwi 3752 . . . . 5  |-  ( x  e.  ~P A  ->  x  C_  A )
2 ssfi 7267 . . . . 5  |-  ( ( A  e.  Fin  /\  x  C_  A )  ->  x  e.  Fin )
31, 2sylan2 461 . . . 4  |-  ( ( A  e.  Fin  /\  x  e.  ~P A
)  ->  x  e.  Fin )
43orcd 382 . . 3  |-  ( ( A  e.  Fin  /\  x  e.  ~P A
)  ->  ( x  e.  Fin  \/  ( A 
\  x )  e. 
Fin ) )
54ralrimiva 2734 . 2  |-  ( A  e.  Fin  ->  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. 
Fin ) )
6 isfin1a 8107 . 2  |-  ( A  e.  Fin  ->  ( A  e. FinIa 
<-> 
A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e.  Fin ) ) )
75, 6mpbird 224 1  |-  ( A  e.  Fin  ->  A  e. FinIa
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    e. wcel 1717   A.wral 2651    \ cdif 3262    C_ wss 3265   ~Pcpw 3744   Fincfn 7047  FinIacfin1a 8093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-er 6843  df-en 7048  df-fin 7051  df-fin1a 8100
  Copyright terms: Public domain W3C validator