MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem10 Unicode version

Theorem fin1a2lem10 8224
Description: Lemma for fin1a2 8230. A nonempty finite union of members of a chain is a member of the chain. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem10  |-  ( ( A  =/=  (/)  /\  A  e.  Fin  /\ [ C.]  Or  A
)  ->  U. A  e.  A )

Proof of Theorem fin1a2lem10
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 5 . . . . . 6  |-  ( a  =  (/)  ->  ( -.  ( [ C.]  Or  a  ->  U. a  e.  a )  ->  a  =  (/) ) )
21necon1ad 2619 . . . . 5  |-  ( a  =  (/)  ->  ( a  =/=  (/)  ->  ( [ C.]  Or  a  ->  U. a  e.  a ) ) )
3 tru 1327 . . . . . 6  |-  T.
43a1i 11 . . . . 5  |-  ( a  =  (/)  ->  T.  )
52, 42thd 232 . . . 4  |-  ( a  =  (/)  ->  ( ( a  =/=  (/)  ->  ( [ C.]  Or  a  ->  U. a  e.  a ) )  <->  T.  )
)
6 neeq1 2560 . . . . 5  |-  ( a  =  b  ->  (
a  =/=  (/)  <->  b  =/=  (/) ) )
7 soeq2 4466 . . . . . 6  |-  ( a  =  b  ->  ( [ C.]  Or  a  <-> [ C.]  Or  b
) )
8 unieq 3968 . . . . . . 7  |-  ( a  =  b  ->  U. a  =  U. b )
9 id 20 . . . . . . 7  |-  ( a  =  b  ->  a  =  b )
108, 9eleq12d 2457 . . . . . 6  |-  ( a  =  b  ->  ( U. a  e.  a  <->  U. b  e.  b ) )
117, 10imbi12d 312 . . . . 5  |-  ( a  =  b  ->  (
( [ C.]  Or  a  ->  U. a  e.  a )  <->  ( [ C.]  Or  b  ->  U. b  e.  b ) ) )
126, 11imbi12d 312 . . . 4  |-  ( a  =  b  ->  (
( a  =/=  (/)  ->  ( [ C.]  Or  a  ->  U. a  e.  a ) )  <->  ( b  =/=  (/)  ->  ( [ C.]  Or  b  ->  U. b  e.  b ) ) ) )
13 neeq1 2560 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  =/=  (/) 
<->  ( b  u.  {
c } )  =/=  (/) ) )
14 soeq2 4466 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( [ C.]  Or  a 
<-> [
C.]  Or  ( b  u.  { c } ) ) )
15 unieq 3968 . . . . . . 7  |-  ( a  =  ( b  u. 
{ c } )  ->  U. a  =  U. ( b  u.  {
c } ) )
16 id 20 . . . . . . 7  |-  ( a  =  ( b  u. 
{ c } )  ->  a  =  ( b  u.  { c } ) )
1715, 16eleq12d 2457 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( U. a  e.  a  <->  U. ( b  u. 
{ c } )  e.  ( b  u. 
{ c } ) ) )
1814, 17imbi12d 312 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( [ C.]  Or  a  ->  U. a  e.  a )  <->  ( [ C.]  Or  ( b  u.  {
c } )  ->  U. ( b  u.  {
c } )  e.  ( b  u.  {
c } ) ) ) )
1913, 18imbi12d 312 . . . 4  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( a  =/=  (/)  ->  ( [ C.]  Or  a  ->  U. a  e.  a ) )  <->  ( (
b  u.  { c } )  =/=  (/)  ->  ( [ C.]  Or  ( b  u. 
{ c } )  ->  U. ( b  u. 
{ c } )  e.  ( b  u. 
{ c } ) ) ) ) )
20 neeq1 2560 . . . . 5  |-  ( a  =  A  ->  (
a  =/=  (/)  <->  A  =/=  (/) ) )
21 soeq2 4466 . . . . . 6  |-  ( a  =  A  ->  ( [ C.]  Or  a  <-> [ C.]  Or  A
) )
22 unieq 3968 . . . . . . 7  |-  ( a  =  A  ->  U. a  =  U. A )
23 id 20 . . . . . . 7  |-  ( a  =  A  ->  a  =  A )
2422, 23eleq12d 2457 . . . . . 6  |-  ( a  =  A  ->  ( U. a  e.  a  <->  U. A  e.  A ) )
2521, 24imbi12d 312 . . . . 5  |-  ( a  =  A  ->  (
( [ C.]  Or  a  ->  U. a  e.  a )  <->  ( [ C.]  Or  A  ->  U. A  e.  A
) ) )
2620, 25imbi12d 312 . . . 4  |-  ( a  =  A  ->  (
( a  =/=  (/)  ->  ( [ C.]  Or  a  ->  U. a  e.  a ) )  <->  ( A  =/=  (/)  ->  ( [ C.]  Or  A  ->  U. A  e.  A ) ) ) )
27 vex 2904 . . . . . . . . . . . 12  |-  c  e. 
_V
2827unisn 3975 . . . . . . . . . . 11  |-  U. {
c }  =  c
2927snid 3786 . . . . . . . . . . 11  |-  c  e. 
{ c }
3028, 29eqeltri 2459 . . . . . . . . . 10  |-  U. {
c }  e.  {
c }
31 uneq1 3439 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( b  u.  { c } )  =  ( (/)  u. 
{ c } ) )
32 uncom 3436 . . . . . . . . . . . . . 14  |-  ( (/)  u. 
{ c } )  =  ( { c }  u.  (/) )
33 un0 3597 . . . . . . . . . . . . . 14  |-  ( { c }  u.  (/) )  =  { c }
3432, 33eqtri 2409 . . . . . . . . . . . . 13  |-  ( (/)  u. 
{ c } )  =  { c }
3531, 34syl6eq 2437 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  ( b  u.  { c } )  =  { c } )
3635unieqd 3970 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  U. (
b  u.  { c } )  =  U. { c } )
3736, 35eleq12d 2457 . . . . . . . . . 10  |-  ( b  =  (/)  ->  ( U. ( b  u.  {
c } )  e.  ( b  u.  {
c } )  <->  U. { c }  e.  { c } ) )
3830, 37mpbiri 225 . . . . . . . . 9  |-  ( b  =  (/)  ->  U. (
b  u.  { c } )  e.  ( b  u.  { c } ) )
3938a1d 23 . . . . . . . 8  |-  ( b  =  (/)  ->  ( ( b  =/=  (/)  ->  ( [ C.]  Or  b  ->  U. b  e.  b ) )  ->  U. ( b  u.  {
c } )  e.  ( b  u.  {
c } ) ) )
4039adantl 453 . . . . . . 7  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  b  =  (/) )  ->  (
( b  =/=  (/)  ->  ( [ C.]  Or  b  ->  U. b  e.  b ) )  ->  U. ( b  u.  {
c } )  e.  ( b  u.  {
c } ) ) )
41 simpr 448 . . . . . . . 8  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  b  =/=  (/) )  ->  b  =/=  (/) )
42 ssun1 3455 . . . . . . . . . 10  |-  b  C_  ( b  u.  {
c } )
43 simpl2 961 . . . . . . . . . 10  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  b  =/=  (/) )  -> [ C.]  Or  ( b  u.  {
c } ) )
44 soss 4464 . . . . . . . . . 10  |-  ( b 
C_  ( b  u. 
{ c } )  ->  ( [ C.]  Or  ( b  u.  {
c } )  -> [ C.]  Or  b ) )
4542, 43, 44mpsyl 61 . . . . . . . . 9  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  b  =/=  (/) )  -> [ C.]  Or  b )
46 uniun 3978 . . . . . . . . . . . 12  |-  U. (
b  u.  { c } )  =  ( U. b  u.  U. { c } )
4728uneq2i 3443 . . . . . . . . . . . 12  |-  ( U. b  u.  U. { c } )  =  ( U. b  u.  c
)
4846, 47eqtri 2409 . . . . . . . . . . 11  |-  U. (
b  u.  { c } )  =  ( U. b  u.  c
)
49 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  (
b  =/=  (/)  /\  U. b  e.  b )
)  ->  U. b  e.  b )
50 simpl2 961 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  (
b  =/=  (/)  /\  U. b  e.  b )
)  -> [ C.]  Or  (
b  u.  { c } ) )
51 elun1 3459 . . . . . . . . . . . . . 14  |-  ( U. b  e.  b  ->  U. b  e.  ( b  u.  { c } ) )
5251ad2antll 710 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  (
b  =/=  (/)  /\  U. b  e.  b )
)  ->  U. b  e.  ( b  u.  {
c } ) )
53 ssun2 3456 . . . . . . . . . . . . . . 15  |-  { c }  C_  ( b  u.  { c } )
5453, 29sselii 3290 . . . . . . . . . . . . . 14  |-  c  e.  ( b  u.  {
c } )
5554a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  (
b  =/=  (/)  /\  U. b  e.  b )
)  ->  c  e.  ( b  u.  {
c } ) )
56 sorpssi 6466 . . . . . . . . . . . . 13  |-  ( ( [
C.]  Or  ( b  u.  { c } )  /\  ( U. b  e.  ( b  u.  {
c } )  /\  c  e.  ( b  u.  { c } ) ) )  ->  ( U. b  C_  c  \/  c  C_  U. b
) )
5750, 52, 55, 56syl12anc 1182 . . . . . . . . . . . 12  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  (
b  =/=  (/)  /\  U. b  e.  b )
)  ->  ( U. b  C_  c  \/  c  C_ 
U. b ) )
58 ssequn1 3462 . . . . . . . . . . . . . . 15  |-  ( U. b  C_  c  <->  ( U. b  u.  c )  =  c )
5954a1i 11 . . . . . . . . . . . . . . . 16  |-  ( U. b  e.  b  ->  c  e.  ( b  u. 
{ c } ) )
60 eleq1 2449 . . . . . . . . . . . . . . . 16  |-  ( ( U. b  u.  c
)  =  c  -> 
( ( U. b  u.  c )  e.  ( b  u.  { c } )  <->  c  e.  ( b  u.  {
c } ) ) )
6159, 60syl5ibr 213 . . . . . . . . . . . . . . 15  |-  ( ( U. b  u.  c
)  =  c  -> 
( U. b  e.  b  ->  ( U. b  u.  c )  e.  ( b  u.  {
c } ) ) )
6258, 61sylbi 188 . . . . . . . . . . . . . 14  |-  ( U. b  C_  c  ->  ( U. b  e.  b  ->  ( U. b  u.  c )  e.  ( b  u.  { c } ) ) )
6362impcom 420 . . . . . . . . . . . . 13  |-  ( ( U. b  e.  b  /\  U. b  C_  c )  ->  ( U. b  u.  c
)  e.  ( b  u.  { c } ) )
64 uncom 3436 . . . . . . . . . . . . . 14  |-  ( U. b  u.  c )  =  ( c  u. 
U. b )
65 ssequn1 3462 . . . . . . . . . . . . . . . 16  |-  ( c 
C_  U. b  <->  ( c  u.  U. b )  = 
U. b )
66 eleq1 2449 . . . . . . . . . . . . . . . . 17  |-  ( ( c  u.  U. b
)  =  U. b  ->  ( ( c  u. 
U. b )  e.  ( b  u.  {
c } )  <->  U. b  e.  ( b  u.  {
c } ) ) )
6751, 66syl5ibr 213 . . . . . . . . . . . . . . . 16  |-  ( ( c  u.  U. b
)  =  U. b  ->  ( U. b  e.  b  ->  ( c  u.  U. b )  e.  ( b  u.  {
c } ) ) )
6865, 67sylbi 188 . . . . . . . . . . . . . . 15  |-  ( c 
C_  U. b  ->  ( U. b  e.  b  ->  ( c  u.  U. b )  e.  ( b  u.  { c } ) ) )
6968impcom 420 . . . . . . . . . . . . . 14  |-  ( ( U. b  e.  b  /\  c  C_  U. b
)  ->  ( c  u.  U. b )  e.  ( b  u.  {
c } ) )
7064, 69syl5eqel 2473 . . . . . . . . . . . . 13  |-  ( ( U. b  e.  b  /\  c  C_  U. b
)  ->  ( U. b  u.  c )  e.  ( b  u.  {
c } ) )
7163, 70jaodan 761 . . . . . . . . . . . 12  |-  ( ( U. b  e.  b  /\  ( U. b  C_  c  \/  c  C_  U. b ) )  -> 
( U. b  u.  c )  e.  ( b  u.  { c } ) )
7249, 57, 71syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  (
b  =/=  (/)  /\  U. b  e.  b )
)  ->  ( U. b  u.  c )  e.  ( b  u.  {
c } ) )
7348, 72syl5eqel 2473 . . . . . . . . . 10  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  (
b  =/=  (/)  /\  U. b  e.  b )
)  ->  U. (
b  u.  { c } )  e.  ( b  u.  { c } ) )
7473expr 599 . . . . . . . . 9  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  b  =/=  (/) )  ->  ( U. b  e.  b  ->  U. ( b  u. 
{ c } )  e.  ( b  u. 
{ c } ) ) )
7545, 74embantd 52 . . . . . . . 8  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  b  =/=  (/) )  ->  (
( [ C.]  Or  b  ->  U. b  e.  b )  ->  U. (
b  u.  { c } )  e.  ( b  u.  { c } ) ) )
7641, 75embantd 52 . . . . . . 7  |-  ( ( ( b  e.  Fin  /\ [
C.]  Or  ( b  u.  { c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  /\  b  =/=  (/) )  ->  (
( b  =/=  (/)  ->  ( [ C.]  Or  b  ->  U. b  e.  b ) )  ->  U. ( b  u.  {
c } )  e.  ( b  u.  {
c } ) ) )
7740, 76pm2.61dane 2630 . . . . . 6  |-  ( ( b  e.  Fin  /\ [ C.] 
Or  ( b  u. 
{ c } )  /\  ( b  u. 
{ c } )  =/=  (/) )  ->  (
( b  =/=  (/)  ->  ( [ C.]  Or  b  ->  U. b  e.  b ) )  ->  U. ( b  u.  {
c } )  e.  ( b  u.  {
c } ) ) )
78773exp 1152 . . . . 5  |-  ( b  e.  Fin  ->  ( [ C.]  Or  ( b  u. 
{ c } )  ->  ( ( b  u.  { c } )  =/=  (/)  ->  (
( b  =/=  (/)  ->  ( [ C.]  Or  b  ->  U. b  e.  b ) )  ->  U. ( b  u.  {
c } )  e.  ( b  u.  {
c } ) ) ) ) )
7978com24 83 . . . 4  |-  ( b  e.  Fin  ->  (
( b  =/=  (/)  ->  ( [ C.]  Or  b  ->  U. b  e.  b ) )  -> 
( ( b  u. 
{ c } )  =/=  (/)  ->  ( [ C.]  Or  ( b  u.  {
c } )  ->  U. ( b  u.  {
c } )  e.  ( b  u.  {
c } ) ) ) ) )
805, 12, 19, 26, 3, 79findcard2 7286 . . 3  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  ->  ( [ C.]  Or  A  ->  U. A  e.  A ) ) )
8180com12 29 . 2  |-  ( A  =/=  (/)  ->  ( A  e.  Fin  ->  ( [ C.]  Or  A  ->  U. A  e.  A ) ) )
82813imp 1147 1  |-  ( ( A  =/=  (/)  /\  A  e.  Fin  /\ [ C.]  Or  A
)  ->  U. A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    T. wtru 1322    = wceq 1649    e. wcel 1717    =/= wne 2552    u. cun 3263    C_ wss 3265   (/)c0 3573   {csn 3759   U.cuni 3959    Or wor 4445   [ C.] crpss 6459   Fincfn 7047
This theorem is referenced by:  fin1a2lem11  8225  pgpfac1lem5  15566
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-rpss 6460  df-1o 6662  df-er 6843  df-en 7048  df-fin 7051
  Copyright terms: Public domain W3C validator